
Investigating TCP/MPTCP 
Support for Drop Computing 
in User Space Network Stacks

Cosmin Stoica, Radu-Ioan Ciobanu, Ciprian Dobre

ciprian.dobre@upb.ro

mailto:ciprian.dobre@upb.ro


● During the pandemic, activities such as remote working, school 
from home, home cinema, sports at home, etc., have become 
normal for many people

● However, the Internet was under a massive strain

● The cloud model needed to be kept alive and usable under 
acceptable latency, throughput, costs, etc.

● Key video streaming services like Netflix or YouTube were forced 
to reduce the quality of their video streaming

Problem



Potential solution

● Fully engage the local resources of smart devices using a paradigm 
such as Drop Computing

● Move towards a decentralized computing model with applicability 
in collaborative computation and data storage services

● Use crowd-based edge/mobile clouds composed of 
mobile/wearable devices

● Communication is possible by using a TCP/IP stack customised for 
the Drop Computing devices



Potential solution (2)

● Drop Computing devices do not have all the standard TCP/IP stack 
functionalities implemented in the kernel

● Their operating systems allow the export of some kernel 
functionalities into user space as libraries

● Examples: Linux Kernel Library (LKL), Library Operating System 
(LibOS), UserModeLinux (UML), etc.

● Drop Computing works best with multipath TCP



Potential solution (2)

● Drop Computing devices do not have all the standard TCP/IP stack 
functionalities implemented in the kernel

● Their operating systems allow the export of some kernel 
functionalities into user space as libraries

● Examples: Linux Kernel Library (LKL), Library Operating System 
(LibOS), UserModeLinux (UML), etc.

● Drop Computing works best with multipath TCP



Goals

● Evaluate the native Linux network stack and its user space Linux 
network stacks in the context of Drop Computing applications that 
use services over TCP

● Analyze the overall behaviour and benefits of using MPTCP in 
conjunction with the Drop Computing paradigm



● Linux Kernel Library (LKL)
○ an export of the Linux kernel code as a library

○ provides a simple and maintainable way for applications that run in environments other 
than Linux to reuse the Linux kernel code

○ the LKL network communication with the host and with the external network is possible 
because virtio-net devices are used

● User Mode Linux (UML)
○ a user space virtual machine that simulates the hardware based on the services exported 

by the host kernel

○ is able to run almost all host applications and services without modifications, because 
the user space run is the same as the one run by the native kernel

○ the user mode kernel is a full Linux kernel without the hardware-specific drivers

LKL and UML



The Drop Computing vision

● Drop Computing proposes creating dynamic 
ad hoc micro-clouds of small devices that 
can collaborate with each other locally, 
before going towards the edge/fog nodes or 
to the cloud

● These low-level devices can communicate 
with each other using mainly close-range 
protocols (Bluetooth, Wi-Fi Direct) and help 
each other by delivering data (“I have 
something that you need so I can give it to 
you”) or performing offloaded computations 
(“I can help you process this”)



Adding MPTCP to Drop Computing

● MPTCP is a key technology in Drop Computing, because of all the 
heterogeneous nodes with different computation resources and 
multiple networking interfaces

● In a Drop Computing ad-hoc network, a hybrid solution has to be 
in place, which:
○ uses the native kernel network stack for the nodes located at the network 

border (gateways, smart set-top boxes, etc.)

○ uses user space networking stacks (like LKL/UML) or virtualisation 
technologies for the other nodes



Adding MPTCP to Drop Computing (2)
● The figure shows a networking system model which can be 

engaged in Drop Computing taking into consideration current 
networking nodes capabilities



Adding MPTCP to Drop Computing (3)
● The figure shows how two set-top boxes running Linux can 

concurrently use the wired LAN connections between them, the 
wired connection with the Internet Provider to connect to the 
services provided by the servers from the cloud, and Wi-Fi for the 
connection with smart devices like TVs, smartphones, smart robot 
vacuums, etc



Experimental setup

● Hardware:
○ computing nodes configured as set-top boxes

○ based on PC Engines APU2D34 motherboards

○ 1 GHz 64bit Dual Core AMD Geode processor

○ 16 GB SSD

○ 4 GB RAM

○ three mini-PCIe slots used for Wi-Fi card/3G/4G modem, etc.

○ 3 1GB NICs (one interface connected to the Internet)



Experimental setup (2)

● Software:
○ Debian distribution with a Linux Kernel 5.4 with MPTCP enabled

○ enabled MPTCP with all path managers and congestion control 
algorithms activated

○ ported the LKL library to the 5.4 MPTCP Linux kernel

○ activated and configured UML (already supported by the Linux kernel 
utilised)

○ used iperf for data traffic generation and curl for file download



● Scenario 1
○ analyses the network traffic between two gateways over the two 1GBps 

Ethernet Interfaces

○ acting as border routers, the two devices have a dual role which allows 
local nodes to connect to the Internet or to interconnect between 
themselves if the local nodes can not connect directly

○ TCP traffic generated using iperf

○ check network throughput using TCP and MPTCP over the 2 Ethernet 
interfaces running iperf directly in Linux with the default Linux network 
stack

○ then, check how the network throughput is sustained by the user space 
network stacks from LKL and UML for TCP and MPTCP

Experimental setup (3)



● Scenario 2
○ tests the behaviour of MPTCP when one gateway node plays the role of a 

local cache for different services like file storage, video streaming, audio 
streaming, etc., providing the requested data if it is available locally

○ used the network configuration from the first scenario and configured 
one gateway node to act as a web server using the Python SimpleHTTP 
module, and the other device as a client which can download files using 
curl

Experimental setup (3)



Results
● The experiments performed in the first scenario focus on how the throughput is influenced by 

the MPTCP scheduler and path manager

● Additionally, we are analysing the impact of the network stack used (Linux Native, LKL, UML) on 
TCP/MPTCP traffic



Results (2)



Results (3)



Results (4)



Results (5)

● The second scenario shows that MPTCP can be successfully used in a web client-server 
architecture, a solution which is widely valued in cloud services



Results (6)



Results (7)



Results (8)



Results (9)



Results (10)



● Conclusions
○ the evaluation of MPTCP behaviour over the Linux native network stack, LKL and UML 

network stacks performed in this paper proves that MPTCP can be used successfully over 
any of them

○ the most suitable one should be selected based on the hardware profile of the device 
used and the software application of the implemented use case

○ we also showed that LKL and UML can be enabled on low-end devices in order to allow 
them to use all their network interfaces and have a better failure handover solution

● Future work
○ evaluate the new version of the Unified Linux Kernel Library

○ start developing MPTCP path planner and scheduler algorithms in order to take into 
consideration the resources capabilities of Drop Computing network nodes

Conclusions and future work



Thank you!
Questions?


