Ramburn & Dhrubajyoti Goswami

ncordia University, Canada

FlexiShard: a Flexible Sharding Scheme for
Blockchain based on a Hybrid Fault Model

Agenda

» Bitcoin & Scalability

» Sharding & Shard Size

» Network Model & Intra-Shard BFT Consensus
» Hybrid Fault Model

» Flexible BFT

» FlexiShard & its Schemes

» Sharding

» m shards: m blocks every 10 minutes

Bitcoin does not Scale Out
» Linear increase in throughput with

| I number of shards

» Bitcoin
QO O0OO0OO0O0OOO » 1 shard: 1 block every 10 minutes
OJONOIOXOIOXOXO) » Adding more resources does not
increase throughput
QLOOOOOO » Improve throughput for crypto
adoption as transactional currency

Bitcoin’s Throughput: =5 transactions per second
Visa’s Throughput: =1700 transactions per second

00O
00O
00O
OJON®
oJoNe,
00O
00O
00O

CAP Theorem / Blockchain Trilemma

Scalability

» Pick one side of triangle

» Sharding lowers collective security

Bitcoin of a system

Decentralization Security

Shard Size

Small shard Large shard
» Performance inside shard » Performance inside shard ‘
(small number of message exchanges) (large number of message exchanges)
» More shards = throughput t » Less shards = throughput ‘

» Security ‘ » Security "

Aim : Middle ground between size (performance) & security

Network Model
Synchrony

» Message delivery bounded by fixed time
A (delta)

» |If A=10 seconds, 6 blocks per minute
» Nonresponsive
» A is a conservative value

» Wait for 10 seconds even if all messages
delivered in 1 second

>

>

Partial Synchrony

Message delivery occurs at actual
network delay a (alpha)

If a = 1 second, 60 blocks per minute
Responsive

More practical

Aim:
Use Partial Synchrony

Fault/Adversarial Model
Traditional Systems

» Byzantine faults only
» Arbitrary/Unpredictable behaviour
» Attack Safety + Liveness
» Most powerful type of fault

» Safety
» Double-spend attack
» Equivocation of values such as Merkle Root
» Falsifying user balances
» Liveness
» Preventing progress of system
» Cutting off communication channels

BFT Consensus Algorithms

>

>

Synchronous BFT Partially Synchronous BFT
f<m/2 » f<m/3
shard size, m = 300 ; f < 149 » m=300;f<99
More resilience = smaller shard size » Less resilience = larger shard size
» Threshold = 10- 10 : size = 300 » Threshold = 10 19 size = 700 - 800
Nonresponsive » Responsive
(RapidChain) » (OmnilLedger)

Aim :shard size comparable to RapidChain’s but Responsive

Aim : Small Shard + Partial Synchrony (best of both worlds)

Fault/Adversarial Model

Traditional Systems FlexiShard
» Byzantine faults only » Hybrid Fault Model
» Arbitrary/Unpredictable behaviour » Byzantine + abc faults

» Attack Safety + Liveness » abc : alive-but-corrupt faults

» Most powerful type of fault » Attack Safety only

» Safety » Collaborate to make progress if
» Double-spend attack node cannot attack safety
» Equivocation of values such as Merkle Root » More practical
» Falsifying user balances

» Liveness

» Preventing progress of system
» Cutting off communication channels

Partially Synchronous Consensus Algorithms

Classic BFT Flexible BFT
N=3f+1
qr qc

q=2/3 q=2/3
» q=2f+1/ 3f+1 = 2/3 (optimal) » Byzantine + abc faults
» PBFT : 2 rounds of voting » qcz=qr
» 2f+1 identical votes per round » F<qr+qc-1
» Byzantine only » byzF <1 -qc
» F<2q-1 » abc < F - byzF

» byzF <2q- 1 » abc < qgr+2qc -2

» abc=0

Partially Synchronous Consensus Algorithms
Flexible BFT Properties

» Byzantine + abc faults

» qcz=qr
» F<qgr+qc-1
» byzF <1-qc ar q
» abc < F - byzF t quorum size qr or qc or both :

» Classic BFT Total number of faults t

> 1q: Lose Liveness Byzantine faults ‘
(Quorum Availability)
» ¥ q: Lose Safety abc faults t

(Quorum Intersection)

» q=2/3is optimal Rate of abc t > Rate of Byz l

» Traditional » FlexiShard 1 » FlexiShard 2 » FlexiShard 3

» Total F <99 (33%) » Total F <125 (41%) » Total F <170 (56%) » Total F <199 (66%)

Shard size, m = 300

Byzantine only » Byz+ abc » Byz+ abc » Byz+ abc
» qr=2/3 » qr=2/3 » qr=2/3 » qr=2/3
» qc=2/3 » qc=0.75 » qc=0.9 » qc=1

—

ByzF < 99 (33%) » ByzF < 75 (25%) » ByzF < 30 (10%) » ByzF =0 (0%)
abcF = 0 (0%) » abcF =50 (16%) » abcF = 140 (46%) » abcF =199 (669

Rigid/Conservative » Practical » Practical » Very Optimisti

Perfect Shards

» Shards are assumed to be PERFECT
» Hence shards always produce correct results

» Need to form shards with NEGLIGIBLE (very low) failure probability

Calculation of Shard Failure probability (Traditional)

» BOUND THE FAILURE PROBABILITY
» Actual failure probability never exceeds bounded probability (overestimation)

» m: shard size, F: total faults in system, N: total nodes in system, X: actual num of byz faults in shard

m=10
» Partial Sync, Byz only, f< m/3

» m=10, f < 3 for safety or f > 4 for failure
» Shard has failed when we have 4 faults OR 5 faults OR 6 faults OR ... 10 faults.
» Praury = P(f=4) + P(f=5) ... + P(f=10)

(6]

> Prauy = P(f 2 [5]) = 2 m 2

Calculation of Shard Failure probability (FlexiShard)
» BOUND THE FAILURE PROBABILITY

» Actual failure probability never exceeds bounded probability (overestimation)

» m: shard size, F: total faults in system, N: total nodes in system, X: actual num of byz faults in shard

Partial Sync, Byz + abc

m=10, fy,, < 4 and f,,c < 4 for safety

» Shard has failed when either byz or abc threshold exceeded

> PFaulty - P(fbyz 2 5) OR P(fpc 2 5)

» Therefore, shard is safe when both type of faults are within their respective bounds

> I:)NonFaulty - I:)(fbyz < 4) AND P(f,,. < 4)

Calculation of Shard Failure probability (FlexiShard)

» Shard is safe when both type of faults are within their respective bounds

> PNonFaulty - P(fbyz < 4) AND P(f,,. < 4)

> PFaulty =1- PNonFaulty

» Calculate all possibilities that a shard is safe:
IDNonFaulty - ID(fbyz =0 AND fabc =O) * ID(fbyz =0 AND fabc =1) ..t I:)(fbyz =0 AND fabc =4)

+ P(fpyz =1 AND fopc =0) + P(fpy; =1 AND fopc =1) . . . + P(fpyz =1 AND f,,c =4)

+ P(fpyz =4 AND fopc =0) + P(fpy; =4 AND fopc =1) . . . + P(f,yz = 4 AND f,pc =4)

> PFaulty =1 - PNonFaulty

Calculation of Shard Failure probability (FlexiShard)

» Hypergeometric Distribution Formula for mixed fault model: byzantine + abc faults

PNonFaultyFlexi - P(Y = fabc AND Z < fbyz)

fbyz fabc _
Zbyz 0 (byz) X (abC 0 abc)>< (m —-byz— abc))

()
Zl((l—qc)m)J ((lbszrop*FJ))

byz=0 byz
()

: l((qr+2ch—2)xm)J F_ ([byZProp . FJ)) (N_F)
abc m — byz — abc

abc=0

> PFaultyFlexi =1- PNonFaultyFlexi

FlexiShard’s Schemes

» Many parameters can be varied
» F, f, m, fae foyzy bYyZProp or byz:abc split, qgr, qc
» Vary parameters to adapt to an ever-changing security environment
» Traditional Systems: F and f only, and rigid values
» Different ways to shard a system
» Schemes in the paper describe ways you can shard a system
» Examples
» How to obtain good quorum sizes
» How to obtain good shard sizes for fixed quorum sizes

» How to obtain an OPTIMAL shard size under different environments

Results
Conventional bounds : F < 0.33 N

PFailure

ST o S e == Shard Size

_2 \\\
—4r Partial

= Synchrony

FlexiShard

Threshold
') | SN ——

-12} Synchrony

—— FlexiShard: F<N/3, qr=qc=0.8 —— Rapidchain: F<N/3, f<m/2
—— Classic OmniLedger: F<N/4 f<m/3 —— OmniLedger: F<N/3, f<m/3

—— Threshold =1 x 1070

~

Results
Conventional bounds exceeded: F < 0.45 N

PFailure

! FlexiShard 2
-10F

—— FlexiShard 1: byz:abc =3:7 —— RapidChain —— FlexiShard 2: byz:abc =1:9
—— Threshold = 1 x 10~

e

How is FlexiShard Useful?

>

Contemporary Sharding
Systems

Rigid parameters

Difficult to adapt to a constantly-changing
environment

Synchrony
» Intra-shard resiliency < 1/2
» Total system resiliency < 1/3
» Small shard

Partial Synchrony
» Intra-shard resiliency < 1/3
» Total system resiliency < 1/4

» Large shard size

FlexiShard

Flexible parameters
Can adapt accordingly & More Practical
Intra-shard resiliency

» Variable

» Can exceed conventional bounds of 1/3 or 1/2
Total system resiliency

» Variable
» Can exceed conventional bounds of 1/4 or 1/3

Smaller shard size in Partial Synchrony

Responsive
Maximise performance potential

» Small fault presence: extract more
performance

» Large fault presence: increase shard resiliency

Conclusion

» Hybrid Fault Model (More practical)
» Middle ground when total faults are within conventional bounds (1/3 or 1/4)

Shards can also withstand more faults than conventional bounds in other cases

Smaller shard sizes comparable to Synchrony; however in Partial Synchrony
Responsive shards in Partial Synchrony (More Practical + Performance Gain)

» Middle ground between performance and security

THANK YOU

Appendix 1 - Components of a Sharding Blockchain

—
.

Node Selection (PoW, PoS)

2. Randomness generation (Secret Sharing, VFSS)

3. Node Assignment (Random Sampling + depends on consensus algorithm)

4. Intra-Shard Consensus (BFT - Sync or Partially Sync or Flexible)

5. Cross-shard Transaction Processing (Inter-Shard)

6. Shard Reconfiguration (Random, CuckooRule, Corruption Speed parameter)

7. Motivation Mechanism

