
FlexiShard
Tirathraj Ramburn & Dhrubajyoti Goswami

Concordia University, Canada

FlexiShard: a Flexible Sharding Scheme for
Blockchain based on a Hybrid Fault Model

Agenda

u Bitcoin & Scalability

u Sharding & Shard Size

u Network Model & Intra-Shard BFT Consensus

u Hybrid Fault Model

u Flexible BFT

u FlexiShard & its Schemes

Bitcoin does not Scale Out

u Sharding

u m shards: m blocks every 10 minutes

u Linear increase in throughput with
number of shards

u Bitcoin

u 1 shard: 1 block every 10 minutes

u Adding more resources does not
increase throughput

u Improve throughput for crypto
adoption as transactional currency

Bitcoin’s Throughput: ≈5 transactions per second
Visa’s Throughput: ≈1700 transactions per second

CAP Theorem / Blockchain Trilemma

u Pick one side of triangle

u Sharding lowers collective security
of a system

Shard Size

u Performance inside shard

(small number of message exchanges)

u More shards = throughput

u Security

u Performance inside shard

(large number of message exchanges)

u Less shards = throughput

u Security

Small shard Large shard

Aim : Middle ground between size (performance) & security

Network Model

u Message delivery bounded by fixed time
▲ (delta)

u If ▲=10 seconds, 6 blocks per minute

u Nonresponsive

u ▲ is a conservative value

u Wait for 10 seconds even if all messages
delivered in 1 second

u Message delivery occurs at actual
network delay α (alpha)

u If α ≈ 1 second, 60 blocks per minute

u Responsive

u More practical

Synchrony Partial Synchrony

Aim:
Use Partial Synchrony

Fault/Adversarial Model

u Byzantine faults only

u Arbitrary/Unpredictable behaviour

u Attack Safety + Liveness

u Most powerful type of fault

Traditional Systems

u Safety
u Double-spend attack

u Equivocation of values such as Merkle Root

u Falsifying user balances

u Liveness
u Preventing progress of system

u Cutting off communication channels

BFT Consensus Algorithms

u f < m/2

u shard size, m = 300 ; f ≤ 149

u More resilience = smaller shard size

u Threshold = 10- 10 : size ≈ 300

u Nonresponsive

u (RapidChain)

u f < m/3

u m = 300 ; f ≤ 99

u Less resilience = larger shard size

u Threshold = 10 -10 : size ≈ 700 - 800

u Responsive

u (OmniLedger)

Synchronous BFT Partially Synchronous BFT

Aim : Small Shard + Partial Synchrony (best of both worlds)

Aim :shard size comparable to RapidChain’s but Responsive

Fault/Adversarial Model

u Byzantine faults only

u Arbitrary/Unpredictable behaviour

u Attack Safety + Liveness

u Most powerful type of fault

u Hybrid Fault Model

u Byzantine + abc faults

u abc : alive-but-corrupt faults

u Attack Safety only

u Collaborate to make progress if
node cannot attack safety

u More practical

Traditional Systems FlexiShard

u Safety
u Double-spend attack

u Equivocation of values such as Merkle Root

u Falsifying user balances

u Liveness
u Preventing progress of system

u Cutting off communication channels

Partially Synchronous Consensus Algorithms

u Byzantine + abc faults

u qc ≥ qr

u F < qr + qc - 1

u byzF ≤ 1 - qc

u abc < F – byzF

u abc < qr + 2qc -2

Classic BFT Flexible BFT

u q = 2f+1 / 3f+1 ≈ 2/3 (optimal)

u PBFT : 2 rounds of voting

u 2f+1 identical votes per round

u Byzantine only

u F < 2q – 1

u byzF < 2q – 1

u abc = 0

Partially Synchronous Consensus Algorithms

u Byzantine + abc faults

u qc ≥ qr

u F < qr + qc - 1

u byzF ≤ 1 - qc

u abc < F – byzF

u Classic BFT

u q: Lose Liveness
(Quorum Availability)

u q: Lose Safety
(Quorum Intersection)

u q = 2/3 is optimal

Flexible BFT Properties

quorum size qr or qc or both :

Total number of faults

Byzantine faults

abc faults

Rate of abc > Rate of Byz

Shard size, m = 300
u Traditional

u Byzantine only

u qr = 2/3

u qc = 2/3

u Total F ≤ 99 (33%)

u ByzF ≤ 99 (33%)

u abcF = 0 (0%)

u Rigid/Conservative

u FlexiShard 1

u Byz+ abc

u qr = 2/3

u qc = 0.75

u Total F ≤ 125 (41%)

u ByzF ≤ 75 (25%)

u abcF = 50 (16%)

u Practical

u FlexiShard 2

u Byz+ abc

u qr = 2/3

u qc = 0.9

u Total F ≤ 170 (56%)

u ByzF ≤ 30 (10%)

u abcF = 140 (46%)

u Practical

u FlexiShard 3

u Byz+ abc

u qr = 2/3

u qc = 1

u Total F ≤ 199 (66%)

u ByzF = 0 (0%)

u abcF = 199 (66%)

u Very Optimistic

Perfect Shards

u Shards are assumed to be PERFECT

u Hence shards always produce correct results

u Need to form shards with NEGLIGIBLE (very low) failure probability

u BOUND THE FAILURE PROBABILITY
u Actual failure probability never exceeds bounded probability (overestimation)

u m: shard size, F: total faults in system, N: total nodes in system, X: actual num of byz faults in shard

Calculation of Shard Failure probability (Traditional)

u Partial Sync, Byz only, f< m/3

u m=10, f ≤ 3 for safety or f ≥ 4 for failure

u Shard has failed when we have 4 faults OR 5 faults OR 6 faults OR … 10 faults.

u 𝑃𝐹𝑎𝑢𝑙𝑡𝑦 = P(f=4) + P(f=5) … + P(f=10)

u 𝑃𝐹𝑎𝑢𝑙𝑡𝑦 = 𝑃 𝑓 ≥ !
"

= ∑
#$!

"

!
#
$

%&#
!&$
%
!

f ≤ 3
f ≥ 4

m=10

u BOUND THE FAILURE PROBABILITY
u Actual failure probability never exceeds bounded probability (overestimation)

u m: shard size, F: total faults in system, N: total nodes in system, X: actual num of byz faults in shard

Calculation of Shard Failure probability (FlexiShard)

u Partial Sync, Byz + abc

u m=10, fbyz ≤ 4 and fabc ≤ 4 for safety

u Shard has failed when either byz or abc threshold exceeded

u PFaulty = P(fbyz ≥ 5) OR P(fabc ≥ 5)

u Therefore, shard is safe when both type of faults are within their respective bounds

u PNonFaulty = P(fbyz ≤ 4) AND P(fabc ≤ 4)

u Shard is safe when both type of faults are within their respective bounds

u PNonFaulty = P(fbyz ≤ 4) AND P(fabc ≤ 4)

u PFaulty = 1 - PNonFaulty

u Calculate all possibilities that a shard is safe:

PNonFaulty = P(fbyz =0 AND fabc =0) + P(fbyz =0 AND fabc =1) . . . + P(fbyz =0 AND fabc =4)

+ P(fbyz =1 AND fabc =0) + P(fbyz =1 AND fabc =1) . . . + P(fbyz =1 AND fabc =4)

.

.

+ P(fbyz =4 AND fabc =0) + P(fbyz =4 AND fabc =1) . . . + P(fbyz = 4 AND fabc =4)

u PFaulty = 1 - PNonFaulty

Calculation of Shard Failure probability (FlexiShard)

u Hypergeometric Distribution Formula for mixed fault model: byzantine + abc faults

𝑃𝑁𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦𝐹𝑙𝑒𝑥𝑖 = 𝑃(𝑌 ≤ 𝑓𝑎𝑏𝑐 𝐴𝑁𝐷 𝑍 ≤ 𝑓𝑏𝑦𝑧)

=
∑'()*+
,'() 01

234 × ∑-'.*+
,-'. 05

627 ×
890

:92349627
8
:

=
∑!"#$%

(('()*)×-) +,-./01∗3
+,-

4
5

× "
;<=>?

((ABCDA=ED)×H)
𝐹 − (𝑏𝑦𝑧𝑃𝑟𝑜𝑝 ∗ 𝐹)

𝑎𝑏𝑐
×

𝑁 − 𝐹
𝑚 − 𝑏𝑦𝑧 − 𝑎𝑏𝑐

u 𝑃𝐹𝑎𝑢𝑙𝑡𝑦𝐹𝑙𝑒𝑥𝑖 = 1 − 𝑃𝑁𝑜𝑛𝐹𝑎𝑢𝑙𝑡𝑦𝐹𝑙𝑒𝑥𝑖

Calculation of Shard Failure probability (FlexiShard)

FlexiShard’s Schemes

u Many parameters can be varied

u F , f, m, fabc, fbyz, byzProp or byz:abc split, qr, qc

u Vary parameters to adapt to an ever-changing security environment

u Traditional Systems: F and f only, and rigid values

u Different ways to shard a system

u Schemes in the paper describe ways you can shard a system

u Examples

u How to obtain good quorum sizes

u How to obtain good shard sizes for fixed quorum sizes

u How to obtain an OPTIMAL shard size under different environments

Results
Conventional bounds : F < 0.33 N

Partial
Synchrony

Synchrony

Threshold

FlexiShard

Results
Conventional bounds exceeded: F < 0.45 N

Synchrony

FlexiShard 1

FlexiShard 2

Threshold

How is FlexiShard Useful?

u Rigid parameters

u Difficult to adapt to a constantly-changing
environment

u Synchrony

u Intra-shard resiliency < 1/2

u Total system resiliency < 1/3

u Small shard

u Partial Synchrony

u Intra-shard resiliency < 1/3

u Total system resiliency < 1/4

u Large shard size

u Flexible parameters

u Can adapt accordingly & More Practical

u Intra-shard resiliency

u Variable

u Can exceed conventional bounds of 1/3 or 1/2

u Total system resiliency

u Variable

u Can exceed conventional bounds of 1/4 or 1/3

u Smaller shard size in Partial Synchrony

u Responsive

u Maximise performance potential

u Small fault presence: extract more
performance

u Large fault presence: increase shard resiliency

Contemporary Sharding
Systems

FlexiShard

Conclusion

u Hybrid Fault Model (More practical)

u Middle ground when total faults are within conventional bounds (1/3 or 1/4)

u Shards can also withstand more faults than conventional bounds in other cases

u Smaller shard sizes comparable to Synchrony; however in Partial Synchrony

u Responsive shards in Partial Synchrony (More Practical + Performance Gain)

u Middle ground between performance and security

THANK YOU

Appendix 1 – Components of a Sharding Blockchain

1. Node Selection (PoW, PoS)

2. Randomness generation (Secret Sharing, VFSS)

3. Node Assignment (Random Sampling + depends on consensus algorithm)

4. Intra-Shard Consensus (BFT – Sync or Partially Sync or Flexible)

5. Cross-shard Transaction Processing (Inter-Shard)

6. Shard Reconfiguration (Random, CuckooRule, Corruption Speed parameter)

7. Motivation Mechanism

