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◼ DNN workloads have become significant.

◼ As the complexity of machine learning algorithms increases, more data becomes available.

Figure 2: Evolution of depth, error-rate, and number of parameters over the yearsFigure 1: Comparison of parameters size of various compact CNN models
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◼ Both GPU and FPGA are growing fast in artificial intelligence acceleration area.

◼ GPU is now dominating the market as it has less engineering.

◼ Perform poorly when it comes to inference as requests often arrive one
at a time.

FPGA Overview and Benefits

Figure 4: Xilinx Alveo U50

◼ However, compared to GPU, FPGA has several outstanding features: 

◼ Flexibility: FPGA allows engineers to reconfigure underlying hardware architecture.

◼ Efficient with lower precision deep learning algorithms, such as binary neural network 
[1] and ternary neural network[2].

◼ Low latency: FPGAs are capable of data parallelism, but also pipeline parallelism

◼ High Power Efficiency:

◼ Xilinx Virtex Ultrascale+, FPGA board has general purpose compute efficiency of 277 GOP/s/W, 

◼ NVidia Tesla P4, GPU produced by Nvidia, the efficiency is of 208 GOP/s/W
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CNN Accelerators
◼ Most FPGA inference accelerators are based on overlay architectures [1], [2], i.e., GPP MM circuits onto 

which compute is scheduled to execute the CNN layers in sequence. 

◼ This approach is flexible, as it enables potentially any CNN topology to be executed by a single 
accelerator,

◼ However, it is not efficient →frequent transfers of weights and activations from/to the memory
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CNN FPGA Accelerators
◼ An alternative FPGA accelerator architecture is streaming accelerator

◼ CNN inference has achieved the lowest latency, highest throughput, and lowest power dissipation.

◼ It is limited by the resources on the FPGA.

◼ Better fit for cloud environment
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CNN Accelerators Challenges

◼ Throughput: 𝑇 =
#𝑏𝑎𝑡𝑐ℎ

max 𝑙𝑎𝑡1,𝑙𝑎𝑡2,….,𝑙𝑎𝑡𝑛
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𝑙𝑎𝑡1 ⋍ 𝑙𝑎𝑡2⋍ , … . , 𝑙𝑎𝑡𝑛

𝒍𝒂𝒕𝟏 𝒍𝒂𝒕𝟐 𝒍𝒂𝒕𝟑 𝒍𝒂𝒕𝟒

➢ Workload:
➢ #PEs?
➢ Data processed 

in parallel
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Proposed Framework

1) Rate Balancing: we propose a MIP 
model to find the optimal parameters 
for a CNN accelerator.
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Proposed Framework

1) Rate Balancing: we propose a model 
to find the optimal parameters for the 
configuration of a CNN accelerator

2) Computational Graph 𝐺 =
(𝑉, 𝐸, 𝜔, 𝜑)

◼ set of Vertices V, vertices weights ω, 

◼ edge set E, edges weight φ.
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Proposed Framework

1) Rate Balancing: we propose a model 
to find the optimal parameters for the 
configuration of a CNN accelerator.

2) Computational Graph 𝐺 =
(𝑉, 𝐸, 𝜔, 𝜑)

◼ set of Vertices V, vertices weights ω, 

◼ edge set E, edges weight φ.

3) Multi-level Graph Partitioning

11

Introduction CNN & FPGA Related Work Challenges Benchmark



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Proposed Framework

1) Rate Balancing: we propose a model 
to find the optimal parameters for the 
configuration of a CNN accelerator.

2) Computational Graph 𝐺 =
(𝑉, 𝐸, 𝜔, 𝜑)

◼ set of Vertices V, vertices weights ω, 

◼ edge set E, edges weight φ.

3) Multi-level Graph Partitioning

4) Coarse-grained Floor planning
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FINN

1) FINN enables the design of heterogeneous custom 
streaming architecture for a given topology 

2) Separate compute engines are dedicated to each layer, 
communicating via on-chip data streams.

3) It has two main units:

1) The Sliding Window Unit (SWU): Supplies the MVU with the 
image by applying interleaving and implementing the 
im2col algorithm. 

2) The matrix-vector unit (MVU): input and output buffers and 
an array of PEs., each with several SIMD lanes.
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FINN
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◼ Convolution Kernel: 3𝗑3, IFM: 56 𝗑56, C=64, OFM 56 𝗑56
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Details of the proposed framework
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1) Inference model with 𝑁 vertices and a platform 
with 𝑀 SLRs, 

◼ For a layer 𝑖 →Maximize (𝑆𝑖 , 𝑃𝑖) such that
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1) Variables Constraints: 

◼ 𝑃𝑖 → 𝜎𝑖,𝑝

◼ 𝑆𝑖 → 𝛾𝑖,𝑝

◼ 𝜺→ 𝑧𝑖,𝑝

1) Resources Constraints: 

◼ 𝐹𝑡𝑖
(𝑃𝑖 , 𝑆𝑖), a linear function that estimates the 

number of resources of type 𝑡 demanded by the 𝑖𝑡ℎ
layer.
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◼ We implement a recursive balanced bi-
partitioning

◼ The weight of the heaviest partition ≤ 𝜀 ×
𝜔(𝑉 )

◼ Stop: k ≥ #F P Gas

◼ Considering bi-partitioning produce 
2𝑛 partitions per iterations:

◼ inbalanced partitions

◼ or too many partitions.
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◼ The refinement step allows us:

◼ to merge smaller partitions, 

◼ further split heavier partitions (with 
k ≤ #FPGAs)
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Motivation Example
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◼ Graph partitioning + Floor 
planning improves the 
frequency by 28%:

◼ 325 MHz to 416 MHz.

Rate Balancing
Graph 

Partitioning
Motivation 
Example

Design 
Generatio

n
Placement Results



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

20

Rate Balancing
Graph 

Partitioning
Motivation 
Example

Design 
Generatio

n

Problem 
Statement

Results

CAD Tools use heuristics for physical implementation

They consider the number of cells in a design, their connections, and the target FPGA device’s physical 
architecture to generate a circuit according to specified constraints

Vendor tools generally achieve better QoR on smaller designs as the resource allocation problem addressed in 
the physical implementation is well-known to be NP-hard.

Focusing the optimization on smaller modules (Components) 

lead to overall QoR improvement in a design
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OCC1

• It allows to implement and analyze (resource analysis, timing analysis, power analysis, etc) a module 
independently of the rest of the design. 

• It enables reusing and preserving the characteristics of placed and routed modules within a top-level design.

Floor planning2

• Utilizing pblock constraints allows carefully selecting the FPGA resources that will be used by each design 
component.

• Port planning with PartPins

Clock routing3
• Accurately run the timing analysis on the OOC modules

Lock logic4
• Once a module attains a desirable performance (Fmax, area, power, etc)

Checkpoint file generation5
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𝑤𝑖
𝑫 𝑾𝒊

𝑫𝑯𝒊

◼ Modules must respect linear localization constraints: 

◼ Two adjacent 𝑀𝑖 and 𝑀𝑗 are non overlapping. 

◼ The localization must respect placement and congestion costs.

𝑫 FPGAs with 𝒌 Dies

ℎ𝑖
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𝑤𝑖
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(𝑤𝑖 , 𝑦𝑖)

1. Create inter-connected nets 
between components

2. Inter-component routing
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◼ Experiment has been conducted on ResNet-50

◼ The hardware is generated using Vivado v2020.2 and RapidWright v2020.

◼ The components are implemented with vivado HLS.

◼ The MIP is solved with LocalSolver.
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◼ Granularity Exploration:
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◼ Granularity Exploration:
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Conclusion

◼ We propose a framework to accelerate model inference on a multi-die Cloud FPGA Platform.

◼ It takes as input the model definition and performs an intensive search in the form of a MIP 
problem to determine each layer’s highest degree of parallelism considering the platform 
constraints.

◼ The graph is then partitioned, and the resulting sub-graphs are allocated to the FPGAs’ dies.

◼ Experiments and results show that our approach improves latency and maximum frequency, 
with little to no impact on the number of resources used.

◼ Future works we intend to extend to deeper neural networks. 
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