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Introduction

DNN workloads have become significant.

As the complexity of machine learning algorithms increases, more data becomes available.
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Figure 1: Comparison of parameters size of various compact CNN models Figure 2: Evolution of depth, error-rate, and number of parameters over the years
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CNN & FPGA

FPGA Overview and Benefits

Both GPU and FPGA are growing fast in artificial intelligence acceleration area.

GPU is now dominating the market as it has less engineering.

m  Perform poorly when it comes to inference as requests often arrive one
at a time.

However, compared to GPU, FPGA has several outstanding features:
m  Flexibility: FPGA allows engineers to reconfigure underlying hardware architecture.

m Efficient with lower precision deep learning algorithms, such as binary neural network
[1] and ternary neural network[2].

m Low latency: FPGAs are capable of data parallelism, but also pipeline parallelism

m High Power Efficiency:

Xilinx Virtex Ultrascale+, FPGA board has general purpose compute efficiency of 277 GOP/s/W,
NVidia Tesla P4, GPU produced by Nvidia, the efficiency is of 208 GOP/s/W Figure 4: Xilinx Alveo U50
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Related Work

CNN Accelerators

Most FPGA inference accelerators are based on overlay architectures [1], [2], i.e., GPP MM circuits onto
which compute is scheduled to execute the CNN layers in sequence.

m This approach is flexible, as it enables potentially any CNN topology to be executed by a single

accelerator,
= However, it is not efficient = frequent transfers of weights and activations from/to the memory
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Related Work

CNN FPGA Accelerators

An alternative FPGA accelerator architecture is streaming accelerator

m CNN inference has achieved the lowest latency, highest throughput, and lowest power dissipation.
m Itis limited by the resources on the FPGA.

m Better fit for cloud environment

Custom Dataflow Accelerator

| Weights
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Challenges

CNN Accelerators Challenges

#batch
Throughput: T = ), lat, = lat,=, ....,lat,

max{latq,lat,,...,lat,}

Custom Dataffuw Accelerator
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Challenges

CNN Accelerators Challenges

#batch
Throughput: T = ), lat, = lat,=, ....,lat,

max{latq,lat,,...,lat,}

Custom Dataflow Accelerator -

>{ PE || PE > PE || PE || PE » Workload:
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Proposed Framework

Rate Balancing: we propose a MIP
model to find the optimal parameters
for a CNN accelerator.

workload

Challenges

Layer 1
Layer 2 Layer 3
Layer 4

a»
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Challenges
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Challenges

Proposed Framework
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Challenges

Proposed Framework

Rate Balancing: we propose a model
to find the optimal parameters for the
configuration of a CNN accelerator.

Computational Graph ¢ =
(V,E, w, )

set of Vertices V, vertices weights w,

edge set E, edges weight ¢.
Multi-level Graph Partitioning

Coarse-grained Floor planning
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FINN

FINN enables the design of heterogeneous custom
streaming architecture for a given topology

Separate compute engines are dedicated to each layer,
communicating via on-chip data streams.

It has two main units:

1) The Sliding Window Unit (SWU): Supplies the MVU with the
image by applying interleaving and implementing the
im2col algorithm.

2)  The matrix-vector unit (MVU): input and output buffers and
an array of PEs., each with several SIMD lanes.

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

sliding
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FINN

Convolution Kernel: 3x3, IFM: 56 x56, C=64, OFM 56 x56
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Rate Balancing

Inference model with N vertices and a platform
with M SLRs,

= For a layer i = Maximize (S;, P;) such that

Variables Constraints:
[ | Pi 90_1',19
[ | Si - )/i,p

mEDZ,

Resources Constraints:

w F;.(P;,S;), alinear function that estimates the
number of resources of type t demanded by the ith
layer.

\
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with F} : 7 :
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2xex100 2xex100
= E dip X 2ip and E di,p=1
p=1 p=1

SN P (P, Si) < LUType, Vi=1,..,M
Zf_1 Fisp,(P;, Si) < DSPygrs, Vi=1,...M
Zil Fbr‘ami (Riasi) < BRAMVHS, Vi = 1, ...,M
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Graph
Partitioning

We implement a recursive balanced bi-

partitioning
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Graph
Partitioning
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Motivation
Example

Motivation Example

Graph partitioning + Floor
planning improves the
frequency by 28%:

325 MHz to 416 MHz.

19
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Jesign
Generatio

c? CAD Tools use heuristics for physical implementation

E They consider the number of cells in a design, their connections, and the target FPGA device’s physical
“=  architecture to generate a circuit according to specified constraints

- Vendor tools generally achieve better QoR on smaller designs as the resource allocation problem addressed in
the physical implementation is well-known to be NP-hard.

e

=t Focusing the optimization on smaller modules (Components)

0 lead to overall QoR improvement in a design

20
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Jesign
Generatio

ED o

e It allows to implement and analyze (resource analysis, timing analysis, power analysis, etc) a module

independently of the rest of the design.
e |t enables reusing and preserving the characteristics of placed and routed modules within a top-level design.

n Floor planning

e Utilizing pblock constraints allows carefully selecting the FPGA resources that will be used by each design

component.
e Port planning with PartPins

B Clock routing

e Accurately run the timing analysis on the OOC modules

n Lock logic

* Once a module attains a desirable performance (Fmax, area, power, etc)

n Checkpoint file generation
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Placement
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Modules must respect linear localization constraints:

= Two adjacent M; and M; are non overlapping.

m The localization must respect placement and congestion costs.

Y
D FPGAs with k Dies

22
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Placement
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1. Create inter-connected nets

between components

Inter-component routing
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Experiment has been conducted on ResNet-50
The hardware is generated using Vivado v2020.2 and RapidWright v2020.
The components are implemented with vivado HLS.

The MIP is solved with LocalSolver.
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Granularity Exploration:

Duplicate
¥ Streams ||

Layers Granularity Block Granularity
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Granularity Exploration:
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Layer-based ResNet Block-based ResNet Baseline ResNet
KFF KLUTs BRAM KFF KLUTs BRAM KFF | KLUTs | BRAM
Resources 741 (] 26%) | 421 (] 24%) | 821.5 (=) | 801 (1 16%) | 479 (I 10%) | 761.6 (Il 7%) | 935 | 526 822
Latency (ms) 4.8 (] 31%) 4.2 (] 33 %) 6.3
Frequency (MHz) 276 (T 37%) 252 (T 25.3%) 201
Avg. Power (W) 208 225 235
Energy Efficiently 29.79 27.98 22.15
Layer Granularity ResNet
Custom API | [ernode | o ihesis | P&R
Routing
Time (hours) 1.14 4.82 4.16 8.9
Ratio ~ 17.4% 82.6% 35.6% 64.4%
Total (hours) 5.96 (2.18x ) 13.02

Block Ganularity
Custom API | Inter-node Routing
Time (hours) 0.32 3.63
Ratio 8.10% 91.8%

Total (hours) 3.95 (3.21x ) < \39
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Conclusion

We propose a framework to accelerate model inference on a multi-die Cloud FPGA Platform.

It takes as input the model definition and performs an intensive search in the form of a MIP
problem to determine each layer’s highest degree of parallelism considering the platform
constraints.

The graph is then partitioned, and the resulting sub-graphs are allocated to the FPGAS’ dies.

Experiments and results show that our approach improves latency and maximum frequency,
with little to no impact on the number of resources used.

Future works we intend to extend to deeper neural networks.
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