
Cuckoo Node Hashing
on GPUs

Muhammad Javed, Hao Zhou,
David Troendle, Byunghyun Jang

Motivation and Purpose

⦿ Concurrent data structure design is important

⦿ Design fast and efficient Hash Table for GPUs

⦿ Room for improvement in the design space

Background

Hash Tables

⦿ Hash tables are data structures which aim to
implement dictionaries

⦿ Supported operations:
⌾ Insert(key, value)
⌾ Search(key)
⌾ Update(key, value)
⌾ Delete(key)

Cuckoo Hashing

⦿ Hash table scheme that supports O(1) search, update,
and delete. Supports O(1) amortized insert as well.

⦿ Two hash functions each with their own indexed table
⦿ Inserting a key can potentially evict older keys from the

tables. Similar to how young cuckoo birds will push
other young cuckoo birds from the nest.

GPU Architecture

⦿ SIMT Architecture

⦿ Warps and Thread Divergence

⦿ CUDA Programming Interface

Cuckoo Node Hashing
Scheme

Base Design

⦿ The hash table contains a set of buckets where each
bucket points to a list of Cuckoo Nodes

⦿ Cuckoo Nodes contain a contiguous chunk of memory
for storing key-value pairs and a pointer field for
pointing to other Cuckoo Nodes

⦿ A set of hash functions H is associated with the table
and a hash function HB

Example table of Cuckoo Node Hashing with 5 buckets

Magnified view of a single Cuckoo Node

The Cuckoo in Cuckoo Node

⦿ Why call it Cuckoo Node?
⌾ Every Cuckoo Node is effectively treated as its own

Cuckoo Hash Table
⌾ Evictions occur within the Cuckoo Node and across

the chain
⌾ Sacrifices constant runtime operations for dynamic

hash table

Inserting in the Cuckoo Node Table

⦿ Determine the bucket the key will go into by applying
HB on the key

⦿ For every Cuckoo Node in the hashed bucket, we insert
and evict keys until we insert a key into an empty slot

⦿ This eviction process within a Cuckoo Node occurs
Max-Loop number of times

⦿ Once Max-Loop is reached within a Cuckoo Node, the
algorithm moves on to the next Cuckoo Node

Example table with Max-Loop value of 2 and 2 hash functions (h0 and
h1 in H). Key 13 has hashed to bucket Bm and an eviction of 16 occurs.

The evicted key 16 is hashed using h1 in the set H. 43 is evicted and 2
evictions have occurred for this Cuckoo Node. Max-Loop is reached.

Since Max-Loop is reached, we move on to the next Cuckoo Node. The
hashed location for the key 43 is empty, so we can place it there.

The insertion process for the key 13 is complete.

Searching, Updating and Deleting

⦿ The search algorithm finds the bucket for the key and
applies all hash functions in H to begin comparisons in
the Cuckoo Nodes

⦿ Update is similar to search and is trivial once search is
implemented

⦿ Delete is also similar to search and marks the key-
value pair as logically deleted

Free Cuckoo Node Management

⦿ When the Cuckoo Node Table is initialized, a
concurrent stack has a set of Cuckoo Nodes loaded
into it

⦿ When a thread that is performing an insert needs a
Cuckoo Node it can pop the stack

⦿ A clean operation, which cleans the table of empty
Cuckoo Nodes, pushes the Cuckoo Nodes onto the
stack

Data Reordering Algorithm

⦿ Occurs before every hash table operation
⦿ Reorders input data based on which buckets the keys

hash to
⦿ Heuristic to sort keys by hash values
⦿ Utilizes coalesced memory accesses and warp-level

primitives to achieve an efficient GPU solution
⦿ Drops keys into buckets which hash values are

mapped to

Experimental Results

⦿ Environment:
⌾ NVIDIA RTX 3090 GPU
⌾ Ubuntu 20.04
⌾ CUDA 11.4

⦿ Comparisons made to state-of-the-art GPU hash
tables:
⌾ Slab Hash
⌾ DACHash

Experimental Environments and
Comparisons

Results from an experiment where 225 elements were inserted into the
table across varying bucket counts. Cuckoo Nodes were configured to
hold 128 key-value pairs, Max-Loop was set to 64, and 4 hash
functions were in the set H.

Results from an experiment where 225 elements were searched for in
the table across varying input sizes. Same configuration as before
except bucket count is 220 for all tables.

Results from an experiment where 225 elements were search for in the
table across varying bucket counts. The left graph is when the keys are
guaranteed to exist in the table and the right graph is when keys do not
exist in the table. Table configurations are same as previously
mentioned.

Probes performed by two different hash table schemes during searches
across varying bucket counts.

Conclusions

⦿ We proposed a dynamic and efficient hash table for
GPU systems which outperforms other state-of-the-
art GPU hash tables

⦿ We proposed a data reordering algorithm for hash
table operations which efficiently utilizes the power
offered by GPUs

End

