

Online Event Selection using GPUs for the Mu3e Experiment

Valentin Henkys, Bertil Schmidt, and Niklaus Berger henkys@uni-mainz.de

Departments of Computer Science and Nuclear Physics, Johannes Gutenberg-University Mainz For the Mu3e Collaboration

ISPDC 2022

- Search for physics beyond the Standard Model
- \rightarrow Need for increasingly precise experiments
- $\bullet~\rightarrow$ High data rates expected:
 - 40 TBps LHCb [1],
 - 3 TBps ALICE [2],
 - 80 Gbps Mu3e Phase I [3]
- $\bullet~\rightarrow$ Perfect for FPGAs and GPUs

Higgs Event. Source: CERN, CC-BY-SA

Mu3e Experiment [3]

- Search for the Lepton Flavor Violating decay $\mu^+ \to e^+ e^+ e^-$
 - Previous upper bound on branching ratio was set by SINDRUM [4] to 10^{-12}
- Located at Paul-Scherrer-Institute (PSI) Switzerland
- 1 year of data taking for Phase I
- muon rate of $1\cdot 10^8 \mu/{\rm s}$ for Phase I, $\geq 1\cdot 10^9 \mu/{\rm s}$ for Phase II

Signal event:

- Momentum and Energy conserved
- Same point of origin (*event* vertex)

Detector: Setup Explained

Detector: One Frame of Data

- Goals:
 - Identify signal-like frames
 - Reduce data rate by at least a factor of 100
 - Run in real time on GPUs
 - Based on [5]
- Outline:

Online Event Selection

- Goals:
 - Identify signal-like frames
 - Reduce data rate by at least a factor of 100
 - Run in real time on GPUs
 - Based on [5]
- Outline:
 - **2** Find particle tracks
 - **3** Check for possible event vertex

- Goals:
 - Identify signal-like frames
 - Reduce data rate by at least a factor of 100
 - Run in real time on GPUs
 - Based on [5]
- Outline:
 - 1 Reduce input problem size
 - **2** Find particle tracks
 - **3** Check for possible event vertex

• Goals:

- Identify signal-like frames
- Reduce data rate by at least a factor of 100
- Run in real time on GPUs
- Based on [5]
- Outline:
 - 1 Reduce input problem size
 - **2** Find particle tracks
 - **3** Check for possible event vertex

	Algorithm 1: Main kernel						
	1	/ Distribute frames over CUDA					
		blocks					
1	fo	or all $frame \in frames$ do in parallel					
2		load_into_shared_memory(frame)					
3		syncthreads()					
4		selection_cuts(frame)					
5		syncthreads()					
6		track_reconstruction(frame)					
7		syncthreads()					
8		vertex_fit(frame)					
9		syncthreads()					
10		store_frame(frame)					
11	e	nd					

Selection Cuts: Cylindrical "Transformation"

z

$$\cos \Phi_{ij} = \frac{\mathbf{h}_{t,i} \cdot \mathbf{h}_{t,j}}{r_{t,i} \cdot r_{t,j}}$$

$$R_t = rac{d_{01}d_{12}d_{20}}{2\left| ({f h}_0 - {f h}_1) imes ({f h}_2 - {f h}_1)
ight|_z},$$
 with $d_{ij} = \left| {f h}_i - {f h}_j
ight|$

Selection Cuts: Efficiency

Selection Cuts: Efficiency

- Assumption: Multiple Scattering in pixel layers only source of uncertainty
- Scattering angles have a mean of 0
- Objective:

$$\chi^{2}(\kappa) = \frac{\Phi_{\mathsf{MS}}(\kappa)^{2}}{\sigma_{\Phi}^{2}} + \frac{\Theta_{\mathsf{MS}}(\kappa)^{2}}{\sigma_{\Theta}^{2}} \quad (1)$$

- Propagate first helix to fourth layer and use closest hit as extension
- Combining multiple triplet solutions to one solution

$$\chi^2_{\text{global}}(\kappa) = \sum_{t}^{n_{\text{triplets}}} \chi^2_t(\kappa). \quad (2)$$

- Propagate first helix to fourth layer and use closest hit as extension
- Combining multiple triplet solutions to one solution

$$\chi^2_{\text{global}}(\kappa) = \sum_{t}^{n_{\text{triplets}}} \chi^2_t(\kappa). \quad (2)$$

- Propagate first helix to fourth layer and use closest hit as extension
- Combining multiple triplet solutions to one solution

$$\chi^2_{\text{global}}(\kappa) = \sum_{t}^{n_{\text{triplets}}} \chi^2_t(\kappa). \quad (2)$$

Algorithm 4: Track Reconstruction

// Distribute across threads

```
1 for all hit_0, hit_1, hit_2 \leftarrow cuts do in parallel
         3hit track \leftarrow fit helix(hit<sub>0</sub>, hit<sub>1</sub>, hit<sub>2</sub>)
 2
         hit_3 \leftarrow find \ closest \ layer_3 \ hit(3hit \ track)
 3
         full\_track \leftarrow fit\_helix(3hit\_track, hit_3)
 4
        if full track \chi^2 < \chi^2_{max} then
 5
             if num tracks < max tracks then
 6
                  store_track(full_track)
 7
                  num tracks + +
 8
 g
             end
10
         end
11 end
```

Vertex Fit

For all e^+ , e^+ , e^- combinations:

- Check for energy conservation $E_{e^+} + E_{e^+} + E_{e^-} = E_{\mu}$
- **2** Project onto transverse plane
- **3** Find 2*D* event vertex, choose vertex with smallest error
- Go back to 3D and find 3D vertex position
- G Check distance to target
- 6 Check momentum conservation

Algorithm 5: Vertex Fit: Part 1

```
// Distribute across threads
1 for all e_0^+, e_1^+, e^- \leftarrow tracks do in parallel
2 | if test\_E_{tot}(e_0^+, e_1^+, e^-) then
3 | store_track_comb(e_0^+, e_1^+, e^-)
4 | num_track_combs + +
5 end
6 __syncthreads()
7 if num_track_combs > max_tracks then
8 | return
```


Algorithm 6: Vertex Fit: Part 2

<pre>// Distribute across threads</pre>	
1 for all $e_0^+, e_1^+, e^- \leftarrow track_combs$ do in parallel	
2 intersections \leftarrow get_intersections(e_0^+, e_1^+, e^-)	
3 vertex \leftarrow calc_vertex_estimate(intersections)	
4 if vertex_estimate. $\chi^2 > \chi^2_{max}$ or keep_frame then	
5 continue	
6 end	
7 if vertex_estimate.target_dist() < target_dist _{max} or keep_frame th	en
8 continue	
9 end	
10 if vertex_estimate.total_momentum(e_0^+, e_1^+, e^-) > momentum _{max} c	or
keep_frame then	
11 continue	
12 end	
13 $keep_frame \leftarrow true$	
14 end	

Test Setup

1080Ti:

- Intel(R) Core(TM) i7-5930K
- NVIDIA Geforce GTX 1080Ti
- 16GB RAM

2080Ti:

- AMD Ryzen Threadripper 2970WX
- NVIDIA Geforce RTX 2080Ti
- 128GB RAM

Test data:

- Mu3e Simulation Framework based on Geant4
- 64ns frame length
- $1.302\cdot 10^6$ frames per second need to be processed

• Muon rate $1 \cdot 10^8 \mu/s$

	approx. % kept
signal tracks	97.45
true tracks	94.56
signal frames	94.42

Benchmarks: Muon Rates

(26)

				2.5				
					2.23	3		
				2		1.9	99	
	•	Reference]	2				
	Our	[5]	dub	1 5				
Selection Cuts	\checkmark	×	beed	1.5				1 14
Track Reconstruction	\checkmark	\checkmark	l IS	1				1.14
Vertex Fit	\checkmark	\checkmark	1	1				0.84
Static cut off at								
1024 possible	×	\checkmark		0.5	_			0.4 _
triplet combinations					°,	୍ଚ	5	<u>(0</u> , 0, 0)
		1		4	× /	4^{\times}		\$\$^^{~}

muon rate

	Our	Reference [5]
Selection Cuts	\checkmark	×
Track Reconstruction	\checkmark	\checkmark
Vertex Fit	\checkmark	\checkmark
Static cut off at		
1024 possible	×	\checkmark
triplet combinations		

Conclusion

- Full implementation of the Online Event Selection for Mu3e Phase I
- Performance goals reached, with a spedeup of 2 over previous version.
- Efficiency kept, but could be improved in future work.

- Placido Fernandez Declara u. a. "A Parallel-Computing Algorithm for High-Energy Physics Particle Tracking and Decoding Using GPU Architectures". In: *IEEE* Access 7 (2019), S. 91612–91626. DOI: 10.1109/ACCESS.2019.2927261. arXiv: 2002.11529 [physics.ins-det].
- [2] David Rohr. "Usage of GPUs in ALICE Online and Offline processing during LHC Run 3". In: EPJ Web of Conferences 251 (2021), S. 04026. DOI: 10.1051/epjconf/202125104026.
- K. Arndt u. a. "Technical design of the phase I Mu3e experiment". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1014 (Okt. 2021), S. 165679. ISSN: 01689002. DOI: 10.1016/j.nima.2021.165679.
- [4] U. Bellgardt u. a. "Search for the decay μ⁺ → e⁺e⁺e⁻". In: Nuclear Physics B 299 (1 März 1988), S. 1–6. ISSN: 05503213. DOI: 10.1016/0550–3213(88)90462–2.

- [5] D. vom Bruch. "Pixel Sensor Evaluation and Online Event Selection for the Mu3e Experiment". Diss. Heidelberg University, 2017.
- [6] Niklaus Berger u. a. "A New Three-Dimensional Track Fit with Multiple Scattering". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2016). URL: http://arxiv.org/abs/1606.04990%0Ahttp: //dx.doi.org/10.1016/j.nima.2016.11.012.

Thank you!