Conclusion

A scalable algorithm for homomorphic
computing on multi-core clusters

Frédéric Gava & Léa Bayati

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

PEC | i lacl

Connalssance - Action

BSP Execution of Homomorphic Programs 1/26

Conclusion

Outline

0 Introduction
9 Homomorphic programming
Q BSP execution of boolean circuits

0 Conclusion

BSP Execution of Homomorphic Programs 2/26

Introduction Cingulata 4 Conclusion

Outline

0 Introduction

BSP Execution of Homomorphic Programs 3/26

Introduction E ecution B¢ Conclusion
(o] Jelele]

: What is the context?

Server
d
.0

ncrypted request

BSP Execution of Homomorphic Programs 4/26

Introduction > Execution BS Conclusion
00000 fe) 000

: What is the context?

Server

Encrypted answer

ncrypted request

Too-curious-but-honest server (cloud provider):
@ Personal data (e. g. medical; health pass)
@ Compagny data (medical data or secret formula)

BSP Execution of Homomorphic Programs 4/26

Introduction Cingulata S Conclusion

0O@000)

Server

Encrypted answer
.0

.0

/" Database ™,
~ Q::ifnnr-ry_p:hd_) >
ncrypted request

Too-curious-but-honest server (cloud provider):
@ Personal data (e. g. medical; health pass)
@ Compagny data (medical data or secret formula)

ANBLIC project (ANalysis in BLInd Clouds), funded by FUI/BPI
with ATOS, Capgemini, CoESSI, Wallix, CEA, ENS, UPEC

BSP Execution of Homomorphic Programs 4/26

Introduction > E ecution B¢ onclusion
00800

: More specifically?

Client
Database
(Encrypted)
X
'l Encrypt l
-4 i
Keyword & :’— —
{Encrypted) s encrypt(x) 3 encrypt(x)
Result N ' Compute & function f on
i (Encrypted) = i the encrypted data
. encrypt(f(x)) «<— encrypt(f(x))
Decrypt

Database B
(Encrypted)]

f(x)

BSP Execution of Homomorphic Programs 5/26

Introduction at Execution
00e00 [

: More specifica

Client
Database
(Encrypted)
X
'l Encrypt l
. o A
Keyword X' 7 FKrA) X)] encrypt(x) — encrypt(x)
{Encrypted] “5-. O/ KeSid) B ~ *1/;1’ I
Result N " - s ! Compute & function f on
C (Encrypred) TR e 3 the encrypted data
. (encrypt(f(x)) «<— encrypt(f(x))
Decrypt
Database B

f(x)

(Encrypted)]

Homomorphic programming is computationally universal
But highly inefficient

BSP Execution of Homomorphic Programs 5/26

Introduction
000e0

: What is homomorphic encryption?

A homomorphic operator (+, @)
@ If Enc(m;)=c; and Dec(c;)=m; (i€{1,2})
@ Then Dec(cy®co) = Dec(cy)+Dec(co) = my+mo

BSP Execution of Homomorphic Programs 6/26

Introduction
000e0

: What is homomorphic encryption?

A homomorphic operator (+, @)
@ If Enc(m;)=c; and Dec(c;)=m; (i€{1,2})
@ Then Dec(cy®co) = Dec(cy)+Dec(co) = my+mo

homomorphic encryption (

FHE is when all the functions (Turing completness) can be
evaluated in a homomorphic way . Mainly, using boolean
circuits (multiplicative depth problem).

BSP Execution of Homomorphic Programs 6/26

Introduction Cin
0000e 00

: Some examples?

Conclusion

cipherspace

6 + 10 (6 «10)/2 = 30

Cloud

Client 375

plainspace

I
@

3¢5 = 15

BSP Execution of Homomorphic Programs 7/26

Introduction Cingulata
0000e 00000

: Some examples?

Conclusion

cipherspace

6+10 =

(Problem and additional solution
@ Problem: very inefficient programs (an example later)

@ Solution: have executed them on HPC architectures (parallel and
distributed ones)

(6 «+10)/2 = 30

Client 375 - 8 3%6 = 15

plainspace

BSP Execution of Homomorphic Programs

Introduction
0000e

: Some example

Conclusion

cipherspace

6 +10 = (6 «10)/2 = 30

Cloud

- - - - -

plainspace

BSP Execution of Homomorphic Programs

Introduction Cingulata ; Conclusion
00000 o 000

Outline

9 Homomorphic programming

BSP Execution of Homomorphic Programs 8/26

Introduction Cingulata ecution BSP Conclusion
0@000 D

: How FHE programming?

==

https://github.com/CEA-LIST/Cingulata

BSP Execution of Homomorphic Programs 9/26

https://github.com/CEA-LIST/Cingulata

Introduction Cingulata Execution BSP
) 0000 o

: How FHE programming?

==

https://github.com/CEA-LIST/Cingulata

Cingulata environment

@ Compilation chain (specific types)
@ C++ operator overloading capabilities
@ Generation of (encrypted) boolean circuits

BSP Execution of Homomorphic Programs 9/26

https://github.com/CEA-LIST/Cingulata

Introduction Clngulata Conclusion
00800 000

Can you show a simple example’?

Sum of two integers !

BSP Execution of Homomorphic Programs

Introduction Cingulata Conclusion
00000 00800 000

: Can you show a simple example?

#include <+.hxx>
int main() {
CiContext::set_config(...); // Set context

Cilnt b{Cilnt::u8};

.
2
3
4
5 Cilnt a{CiInt::u8}; // create from unsigned 8-bit template
6
7 Cilnt c{Cilnt::u8};

8

9

a.read("a"); // read variable a and set name
10 b.read("b"); // read variable a and set name
11 c=a+b;
12 c.write("c"); // set name and write variable
13

14 /+ Export to file the "tracked" circuit =/
15 CiContext::get_bit_exec_t<BitTracker>()—>export_blif(blif_name, "hello")

BSP Execution of Homomorphic Programs

Membership in an
encrypted data-base !

BSP Execution of Homomorphic Programs

Cingulata
[o]e]e] lo]

: Can you show a real example?

=

1 main() {

2 Cilnt PassTarget{Cilnt::s32};

3 vector<Cilnt> HeathPass(list_size, Cilnt::s32);

4 PassTarget.read("a");

5 // Initialising the Data Base (reading) as an array
6

7

8

9

for (inti=0;i < list_size; i++) {
T HeathPassJi].read("b_" + to_string(i));

}
// Comparing all the data (while updating the answer)
10 bool answer = false;

11 for (inti = 0; (i < list_size) or (not(answer)); i++) {
T answer = (PassTarget == HeathPass]i]);

13 }

14 // Finally writing the answer
15 answer.write("s");

16 }

BSP Execution of Homomorphic Programs 11/26

Introduction Cingulata Conclusion
00000 00000 00 000

: Can you show a real example?

in

main() {

Cilnt PassTarget{Cilnt::s32};
vector<Cilnt> HeathPass(list_size, Cilnt::s32);

PassTarget.read("a");

// Initialising the Data Base (reading) as an array
for (inti=0;i < list_size; i++) {

T HeathPassJi].read("b_" + to_string(i));

}

// Comparing all the data (while
10 bool answer = false;
11 fTr (inti=0; (i < list_size) or (not(answeryr;

© 00 N o O » W0 N =

ating the answer)

answer = (PassTarget == HeathPass]i]); '
13 } J_j :

14 // Finally writing the answer) gOt 1
15 answer.write("s");

BSP Execution of Homomorphic Programs 11/26

Cingulata
[o]e]e] lo]

: Can you show a real example?

=

1 main() {

2 Cilnt PassTarget{Cilnt::s32};

3 vector<Cilnt> HeathPass(list_size, Cilnt::s32);

4 PassTarget.read("a");

5 // Initialising the Data Base (reading) as an array
6

7

8

9

for (inti=0;i < list_size; i++) {
T HeathPassJi].read("b_" + to_string(i));

}

// Comparing all the data (while updating the answer)
10 CiBit answer(0);
11 for (inti=0;i < list_size; i++) {

T answer = answer xor (PassTarget == HeathPassi]);

13 }

14 // Finally writing the answer
15 answer.write("s");

16 }

BSP Execution of Homomorphic Programs 11/26

Cingulata
[eJe]e])

BSP Execution of Homomorphic Programs

Cingulata
[eJe]e])

What can we remark?
@ Cingulata generates boolean circuits
@ They are big but also manipulating encrypted booleans R

@ Making their execution very slow
@ Even on multi-cores using parallel threads

BSP Execution of Homomorphic Programs 12/26

Cingulata
[e]e]e]e]]

What can we remark?

Conclusion

@ Cingulata generates boolean circuits
@ They are big but also manipulating encrypted booleans
@ Making their execution very slow

@ Even on multi-cores using parallel threads

What can we do?
@ Distributed execution using the BSP model
@ Finding a distribution of the gates
@ Benchmarking

SARANEN N

BSP Execution of Homomorphic Programs

Cingulata

[eJe]e])

Why not using?
@ Dynamic schedulling (workflow): too long to
redistribute data
@ Master-slave: same
@ Complex algorithm (model) = loss of confidence

BSP Execution of Homomorphic Programs

12/26

Introduction ata Execution BSP Conclusion
0 ©00 o 000

Outline

Q BSP execution of boolean circuits

BSP Execution of Homomorphic Programs

Execution BSP
00000000000

: How to manage the gates?

(v is a gate of G)
level(G, v) is inductively defined by :
@ 0if v e Vj (input)
@ max(n;) + 1if Vv; such that veedges(G, v;) and
level(G, v;) = n; (otherwise)

BSP Execution of Homomorphic Programs 14/26

Execution BSP
00000000000

: How to manage the gates?

Example
Niveauy | [ing,iny,...,inys5]
[to, t1, 13, o, 4]
Niveauo [t5, te]
Niveaus [t7, tg]
Niveau, | [fg]

BSP Execution of Homomorphic Programs 14/26

Introduction Cingulata Execution BSP Conclusion
00®00000000

: What is the BSP execution?

Algorithm: execution of boolean circuits

-

input : A boolean circuit G and encrypted input bits
output: Encrypted output bits

3 (G, levels, N) < build(G);

4 {G;} < select(G, levels, N, pid);
5 bits < read(V,);

6 for/e {1---N} do
7
8
9

N

sub — G; where Gj € {Gj};
toSend « run(sub, bits);

rcv « CommBSP(toSend);
bits — update(rcv);

=
=)

11 end
write(Vo, bits);

-
N

BSP Execution of Homomorphic Programs 15/26

Introduction Cingulata Execution BSP Conclusion
00®00000000

: What is the BSP execution?

Algorithm: execution of boolean circuits

1 input : A boolean circuit G and encrypted input bits
output: Encrypted output bits

3 (G, levels, N) < build(G);

4 {G;} < select(G, levels, N, pid);
5 bits < read(V,);

6 for/e {1---N} do
7
8
9

N

sub — G; where Gj € {Gj};
toSend « run(sub, bits);
rcv « CommBSP(toSend);
10 bits — update(rcv);
11 end
12 write(Vyy, bits);

Distribution of the gates

Hashing the gates modulo p

BSP Execution of Homomorphic Programs 15/26

Execution BSP Conclusion
00®00000000 000

: What is the BSP execution?

Example of distribution (machine with p = 2)

[to —’0,1'1 - 1,t3 —>O,t2 - 1,1'4 —>0]
Niveau, | [ts = 0,1 — 1]

Niveaus | [= 0,1 — 1]

Niveauy | [fg — 0]

BSP Execution of Homomorphic Programs

Execution BSP
[ele]e] lelelelelele]e)

: What is your distributed architecture?

Benchmarks on

8 places, 38 clusters, 761
nodes, 15696 CPU cores,
101.5 TiB RAM

BSP Execution of Homomorphic Programs 16 /26

Execution BSP

O00e0000000

8 places, 38 clusters, 761
nodes, 15696 CPU cores,
101.5 TiB RAM

BSP Execution of Homomorphic Programs

Executlon BSP clusion
O00@0000000

: What is your dlstrlbuted architecture?

8 places, 38 clusters, 761
nodes, 15696 CPU cores,
101.5 TiB RAM

BSP Execution of Homomorphic Programs 16 /26

Introduction Cingulata Execution BSP
) 8 000@0000000

: What is your distributed architecture?

Benchmarks on

8 places, 38 clusters, 761
nodes, 15696 CPU cores,
101.5 TiB RAM

@ Lille/chetemi; 15 nodes of 2xIntel Xeon E5-2630 of 10 cores
(with 256 GiB RAM) and a 10 Gbps (SR-I0OV) network

@ Nantes/ecotype; 48 nodes of 2xIntel Xeon E5-2630 of 10 cores
(with 128 GiB) and a 10 Gbps (SR-IOV) network

BSP Execution of Homomorphic Programs

Cingulata Execution BSP Conclusion
I 0000®000000 [

: For which performances?

Benchmarks of membership

#size | #nodes | #procs | #time(s) | speedup
80 4 2 22 3.6

80 16 2 12 6.7

160 4 2 66 2.6

160 16 2 22 7.8

320 4 2 97 -

320 16 2 41 -

BSP Execution of Homomorphic Programs 17 /26

Execution BSP clusion
0000e000000

Benchmarks of membership

#size | #nodes | #procs | #time(s) | speedup
80 4 2 22 3.6

80 16 2 12 6.7

160 4 2 66 2.6

160 16 2 22 7.8

320 4 2 97 -

320 16 2 41

Memory consumption (with/without managment)

S200 - Withow

o ‘\ | | | |
0 20 40 60 80 100

Execution BSP clusion
0000e000000

#size | #nodes | #procs | #time(s) | speedup

80 4 2 22 3.6
16 12 6.7
4 66 2.6

Not enough !

@ Too much and badly balanced communication
@ Badly balanced computations

@ We need better distributions !

=200 Withoue
£150 .
2100]
= 50|]
g o | | | |

O 0 20 40 60 80 100

BSP Execution of Homomorphic Programs 17 /26

Cingulata Execution BSP onclusion
00000@00000)

: How to find such distributions?

So, need of an heuristic

algorithm

Génération

intermédiaire
Génération t (marr'ng pool) Génération t+1
e T @

| ® . | seiection | |croisements|
1 J | } |
\ ! L | Mutations... |

BSP Execution of Homomorphic Programs

Introduction Cingulata Execution BSP Conclusion
00000080000

: How configuring such an algorithm?

BSP Execution of Homomorphic Programs

Introduction Execution BSP Conclusion
00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

BSP Execution of Homomorphic Programs

Introduction Execution BSP
> 00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

BSP Execution of Homomorphic Programs

Execution BSP
00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

BSP Execution of Homomorphic Programs

Introduction Execution BSP
> 00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

BSP Execution of Homomorphic Programs

Introduction Execution BSP
00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

and

v

BSP Execution of Homomorphic Programs 19/26

Introduction Execution BSP
00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

and
@ Easy to implement and local optimum

v

BSP Execution of Homomorphic Programs 19/26

Introduction Execution BSP
00000080000

: How configuring such an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

and
@ Easy to implement and local optimum
@ Partial results can be reused

v

BSP Execution of Homomorphic Programs 19/26

Introduction Execution BSP
)) 00000080000

: How configuringrsuch an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

and
@ Easy to implement and local optimum
@ Partial results can be reused
@ But working only for a single machine for each circuit

v

BSP Execution of Homomorphic Programs 19/26

Introduction Execution BSP
)) 00000080000

: How configuringrsuch an algorithm?

@ Individuals = association gates = processors (per level)

@ Selection = abstract (cost) BSP execution of the circuit for
a particular machine with its BSP parameters

@ Crossover = merging associations

@ Mutation = moving a gate in the association

and
@ Easy to implement and local optimum

@ Partial results can be reused
@ But working only for a single machine for each circuit
@ But “slow” so only for the biggest circuits

v

BSP Execution of Homomorphic Programs 19/26

Execution BSP
000000e000

: How much time to find such local optimums?

Membership (80 items) for a 2 x 4 processors machine:

14250 - min
max
— moy
14000
& 13750 4
[}
o
wu
=]
= 13500 1
o
5
9 13250 4
=
=
13000 -
12750
T T T T T T T
0 50 100 150 200 250 300
Generation

BSP Execution of Homomorphic Programs 20/ 26

Execution BSP
0000000800

: Do we gain in load-balancing?

For each super-step (membership 40 items):

“Random” distribution Genetic distribution

]
|
NN |
|t
AR R
D ARG
.

0.0 -

W
=]
L

2.5 4

N
n
L

[T ——
_ ||hH|||l|
LR REAR AR

- UMRARARRRRRRRANINN... |

] 20 40 60 80] 20 40 60 80
temps (super etape) temps (super etape)

~
=)
L

€]

duree totale
I
w

duree totale

L

o
=
o

0.

n
e
wn

e
o

BSP Execution of Homomorphic Programs 21/26

Introduction Cingulata Execution BSP Conclusion
o) (00000000080 000

: Have you another example?

BSP Execution of Homomorphic Programs 22/26

Execution BSP
00000000080

: Have you another example?

From the ANBLIC project

Public medical database and encrypted requests (scoring):
score(q, d) = coord(q, d) x Zteq tf(t,d) x idf(t)2
Could be rewrite as:
score(q,d) = ¥ o7 XV x(t,d) X ¥ o7 XV .a(t, d)

BSP Execution of Homomorphic Programs 22/26

Introduction Cingulata Execution BSP
) o} 00000000080

: Have you another example?

From the ANBLIC project

Public medical database and encrypted requests (scoring):
score(q, d) = coord(q, d) x Zteq tf(t,d) x idf(t)2
Could be rewrite as:
score(q,d) = ¥ o7 XV x(t,d) X ¥ o7 XV .a(t, d)

1 // Public database (ALPHA and CHI)

2 // NUM_OF_TERMS, number of terms in the dictionary
3 // NUM_OF_DOCS, number of documents in the database
4 for(int d=0;d<NUM_OF_DOCS;d++) {

5 | coord=acc=0;
6 | for(int t=0;t<NUM_OF_TERMS;t++) {
7 acc = acc + q[t]-ALPHA[t][d];
8 coord = coord + q[t]*CHI[t][d];
9 | score[i]=acc+coord;
10
}

BSP Execution of Homomorphic Programs 22/26

Introduction Execution BSP
00000000000

: Have you benchmarks?

Benchmarks of scoring (request in a medical database)

#nodes | #procs | #cores | #BSP-naive | #BSP-gen | speedup
1 1 16 - 5769 -

4 1 16 5408 3603 1.6

4 2 8 2485 1866 3.1

8 1 16 3432 1958 3.0

8 2 8 1390 1148 5.0

16 1 16 1310 1095 5.3

16 2 8 716 651 8.9

BSP Execution of Homomorphic Programs 23/26

Introduction Execution BSP
00000000000

: Have you benchmarks?

Benchmarks of scoring (request in a medical database)

#nodes | #procs | #cores | #BSP-naive | #BSP-gen | speedup
1 1 16 - 5769 -

4 1 16 5408 3603 1.6

4 2 8 2485 1866 3.1

8 1 16 3432 1958 3.0

8 2 8 1390 1148 5.0

16 1 16 1310 1095 5.3

16 2 8 716 651 8.9

V.

Not enough !

@ Better performances using the “genetic” distribution
@ Better performances when using both multi-core and BSP
@ But not a linear acceleration

4

BSP Execution of Homomorphic Programs 23/26

Introduction Conclusion

Outline

0 Conclusion

P Execution of Hom

Introduction Conclusion

Conclusion

BSP Execution of H 25/26

Introduction Execution BS Conclusion
0®0

Conclusion

@ BSP execution of boolean circuits (from Cingulata)

BSP Execution of Homomorphic Programs 25/26

Introduction Cingulata Execution BS Conclusion
0®0

Conclusion

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution

BSP Execution of Homomorphic Programs 25/26

Introduction Cingulata Execution BS Conclusion
0®0

Conclusion

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution
@ Benchmarks on the Grid’5k environment

BSP Execution of Homomorphic Programs 25/26

Introduction Execution BSP Conclusion
)) o (o] le}

Conclusion

Main results

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution
@ Benchmarks on the Grid’5k environment

Perspectives (Ongoing/Future Work)

BSP Execution of Homomorphic Programs 25/26

Introduction Execution BSP Conclusion
)) o (o] le}

Conclusion

Main results

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution
@ Benchmarks on the Grid’5k environment

Perspectives (Ongoing/Future Work)
@ (Multi-)BSP execution

A\

BSP Execution of Homomorphic Programs 25/26

Conclusion
(o] le}

Conclusion

Main results

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution
@ Benchmarks on the Grid’5k environment

Perspectives (Ongoing/Future Work)
@ (Multi-)BSP execution

@ Merging of sub-graphs (sub-distribution) to avoid some
synchronisations and having better performances

A\

BSP Execution of Homomorphic Programs 25/26

Conclusion
(o] le}

Conclusion

Main results

@ BSP execution of boolean circuits (from Cingulata)
@ A genetic algorithm/heuristic for the gates distribution
@ Benchmarks on the Grid’5k environment

Perspectives (Ongoing/Future Work)
@ (Multi-)BSP execution

@ Merging of sub-graphs (sub-distribution) to avoid some
synchronisations and having better performances

@ More examples and benchmarks

A\

BSP Execution of Homomorphic Programs 25/26

Merci !

	Introduction
	bidon

	Homomorphic programming
	bidon

	BSP execution of boolean circuits
	bidon

	Conclusion
	bidon

