
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under agreement number 957407.

DAPHNE: Integrated Data Analysis Pipelines
for Large-Scale Data Management, HPC,

and Machine Learning
Patrick Damme

TU Graz & Know-Center GmbH

Oral communication @ ISPDC 2022, Basel, Switzerland, July 12, 2022

https://daphne-eu.eu/

https://daphne-eu.eu/

Modern Data-driven Applications

ML-assisted Manufacturing
Biomedical Engineering

Natural Sciences

Remote SensingTransportation
Health-care

Finance + many more

Integrated Data Analysis (IDA) Pipelines

D

Small-Scale
Simulation w/

diff. params

D’

Featurization
and Random
Reshuffling

ML Model
Training M

ML-assisted
Full-Scale

Simulation

D’’

Data-Analysis
Pipeline

Data Management
& query processing

Machine Learning
training & scoring

High-Perf. Computing
custom codes & simulations

DM ML HPC+ +

Example: ML-assisted simulation

Challenges
• Deployment Challenges

• Hardware Challenges
• DM+ML+HPC share compilation

and runtime techniques /
converging cluster hardware

• End of Dennard scaling:
P = α CFV2 (power density 1)

• End of Moore’s law
• Amdahl’s law: sp = 1/s
è Increasing Specialization

#1 Data
Representations

Sparsity Exploitation
from Algorithms to HW

dense

graph

sparse

compressed

#2 Data
Placement

Local vs distributed
CPUs/
NUMA

GPUs

FPGAs/
ASICs

#3 Data
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8,
BF16, TF32, FlexPoint

[NVIDIA
A100]

è DAPHNE Overall Objective:
Open and extensible system infrastructure

Different
Systems/
Libraries

Dev Teams Programming Models

Resource
Managers

Cluster
Under-

utilization

Data/File
Exchange

Project Consortium

13 partner institutions
from 7 countries
• DM, ML, HPC
• Academia & industry
• Different application

domains

Example Use Cases
• DLR Earth Observation

• ESA Sentinel-1/2 datasets à 4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42

(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,

ResNet-20, climate models

• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)

• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing

[So2Sat LC42: https://mediatum.ub.tum.de/1454690]

[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of

Global Local Climate Zones. GRSM 8(3) 2020]

https://mediatum.ub.tum.de/1454690

System Architecture

LLVM

Python API w/ lazy evaluation MLIR Dialects,
Extension Catalog

(new data types,
kernels,

scheduling algs)

Sideways Entry,
DSL-level

constraints (data
formats & data/op

placement)

Language Abstractions
• Design Principles

• Frame and Matrix Operations
(coarse-grained)

• Data Independence
(abstract data types)

• Extensibility
(data types, operations, HW)

• DSL Operations
• Basic built-in operations (RA, LA)
• High-level built-in operations

(e.g., SQL, PS, map on frames/matrices)
• MLIR SCF (loops, branches)
• Typed and untyped functions

(hierarchy of composite primitives)
• UDFs and external libraries

dc = DaphneContext()
G = dc.from_numpy(npG)
G = (G != 0)
c = components(G, 100, True).compute()

Python API DaphneLib

def components(G, maxi, verbose) {
n = nrow(G); // get the number of vertexes
maxi = 100;
c = seq(1, n); // init vertex IDs
diff = inf; // init diff to +Infinity
iter = 1;
// iterative computation of connected components
while(diff>0 & iter<=maxi) {
u = max(rowMaxs(G * t(c)), c); // neighbor prop
diff = sum(u != c); // # of changed vertexes
c = u; // update assignment
iter = iter + 1;

}
}

Domain-specific Language DaphneDSL

Multiple dispatch of functions/kernels

Optimizing Compilation Chain
• Goal: systematic lowering from DaphneIR to kernels and LLVM

• Optimization Passes
• MLIR Programming Language Rewrites (CSE, constant propagation, constant

folding, branch removal, code motion/loop hoisting, function inlining / unrolling)
• Type and Property Inference (e.g., types/schema, shapes/sparsity, symmetry)
• Inter-Procedural Analysis (function specialization)
• Algebraic Simplification Rewrites (e.g., relational/linear algebra rewrites)
• Operator Ordering (e.g., join ordering/enumeration, matrix multiplication chain

optimization, sum-product optimizations, data-flow-graph linearization)
• Generation of Fused Operator Pipelines (selection of fused operators in DAGs,

vectorization/tiling, and splitting/merging strategies of inputs/results)
• Memory Management (update-in-place, reuse of allocations, garbage collection)
• Execution Type Selection (local vs distributed incl. primitives caching/partitioning)
• Device Placement (e.g., CPU/GPU/FPGA, multiple devices)
• Physical Operator Selection (e.g., different join/group-by/matmult operators)

Data Representations
• Data Types: Matrix, Frame, Scalar, (Tensor, List)
• Value Types: e.g., SI8, SI32, SI64, UI8, UI32, UI64, FP32, FP64

Distributed Collection of Tiles Federated Matrix/Frame

Local runtime Distributed runtime

row-major

one dense array

ordered rows

column-major

Dense Matrix

CSR Matrix

Frame

Vectorized (Tiled) Execution

Default Parallelization
Frame & Matrix Ops

Fused Operator Pipelines
on Tiles/Scalars + Codegen

Locality-aware,
Multi-device Scheduling

Vectorized (Tiled) Execution, cont.
• #1 Zero-copy Input Slicing

• Create view on sliced input (no-op)
• All kernels work on views

• #2 Sparse Intermediates
• Reuse dense/sparse kernels
• Sparse pipeline intermediates for free

• #3 Fine-grained Control
• Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
• Scheduling for load balance (e.g., sparse operations)

• #4 Computational Storage
• Task queues connect eBPF programs, async I/O

into buffers, and subsequent operator pipelines
FP32
FP32

FP32
FP32 FPGA

SSD ResNet-20
Scoring

UI8

y

Distributed Vectorized Execution

• Federated matrices/frames + distribution primitives
• Hierarchical vectorized pipelines and scheduling

• Coordinator
(spawns distributed fused pipeline)
• #1 Prepare Inputs

(N/A, repartition, broadcasts,
slices broadcasts as necessary)
• #2 Coarse-grained Tasks

(tasks run vectorized pipeline)
• #3 Combine Outputs

(N/A, all-reduce, rbind/cbind)

Node 1

X
[1:

100M]

Node 2

X
[100M:
200M]

colmu
colsd

y

y

(X)

XTX

XTy

Extensibility
• Goals for Extensibility

• New data types and kernels (e.g., compressed, HW devices)
• New optimization passes and scheduling algorithms
• Integration with other MLIR dialects (e.g., linalg)

• #1 Extension Catalog
• Register kernels/data types as shared libraries
• Type hierarchy, cost functions, constraints

• #2 DSL-level Extensibility/Configuration
• Data representations, data/ops placement (constraints)
• Sideways Entry: daphnec takes DaphneDSL and DaphneIR

• #3 System Internals
• Extended DaphneIR, new optimization passes, custom compilation chains

X = sparse(Y);
X = compress(Y);
X = device(Y, “/GPU:0”);
X = Y @_gpu Z;

Artifact Type Cost Lib
compress K-Reorg ./clib.so

mm_asic K-Matmult ./mma.so

CompMatrix D-Matrix ./clib.so

Experiments: Simple IDA Pipelines
Setup: Single node w/ 2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs (data), NVIDIA T4 GPU (8.1 TFLOP/s, 16 GB),
and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB) since Dec 29

P1: TPC-H SF10 csv, query processing
+ linear regression training on CPUs

P2: So2Sat LCZ42 csv (testset),
ResNet-20 scoring on GPU

Experiments: Vectorized Execution

• Ongoing Experiments
• FPGA kernels on D5005, CPU+GPU vectorized pipelines
• Distributed sparse runtime operations on Vega supercomputer
• Sparse vectorized pipelines and scheduling algorithms

Linear Regression w/
varying Data Size and Vectorization

K-means Clustering w/
varying Data Size and Vectorization

• Current Status
• System architecture and design
• Initial DSL and Python API
• Prototype of MLIR-based

compiler and runtime
• Vectorized execution

(fused pipelines, scheduling)
• GPU (and FPGA) integration,

BLAS/DNN libraries, I/O primitives
• Standalone distributed runtime w/

different distribution primitives

• Joint Paper on System
Architecture
• Published at CIDR 2022

Summary

è DAPHNE Overall Objective:
Open and extensible system infrastructureDM + ML + HPC

Further Information

• DAPHNE is open-source software
• https://github.com/daphne-eu/daphne
• Apache v2 license
• Towards an inclusive dev community
è Potential for collaboration in 2022-2024

• Check out our website
• https://daphne-eu.eu

• Follow us on twitter
• @daphne_eu

Enable researchers to
experiment with new

prototypes and extensions

https://github.com/daphne-eu/daphne
https://daphne-eu.eu/
https://twitter.com/daphne_eu

Backup

