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@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)
@ Spectral methods constitute a way of solving PDEs

@ If Fourier Series are used, the Laplacian can be computed based on the

differentiation property
V2u(x,y) €% (@ + B)U(. )
In terms of parallel computing,
@ Straightforward strategy: use of parallel FFTs routines

@ We, however, consider the whole kernel

@ |t exploits the peculiar features of the Laplacian operator to get a more
efficient parallel implementation
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@ Four computation steps separated by communications
@ Dimensions are sequentially computed in a divide-and-conquer strategy

@ Blocking communications assure such strict sequencing
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@ A final sum finishes the computation Z = l l l l l l
@ Same number of blocks: communication bandwidth f f f f f f

and computational load FLOPS are the same

Nonblocking 1D comput.

@ The potential benefits come from overlapping sficontt comm. - wornel time
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@ Classical solution based on the 2D FFT of the MPI-FFTW library
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@ the overlapped solution provides a speedup (S) where 1 < 5 <2
@ an exception always occurs at N/P? = 2'° (communication issue)

@ the FFTW-MPI replicates the cache miss for N/P? = 2!
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@ Tests designed to answer whether overlapping is responsible for speedup
@ Elapsed, computation and communication times are separately calculated
for different problem sizes

@ Sum of computation and communication has been added to the figure
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» @ Elapsed is NOT the sum

of both
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N =N xN,
@ Overlapping is represented by the difference between black and magenta
@ The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

@ However, no benefits are achieved when one prevails over the other
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An overlapped implementation for the parallel computation of the Laplace
has been presented

Inherent features of the operator are exploited leading to data
independency

Computation and communications jobs are overlapped based on
nonblocking communications

Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

Speedup lies between 1 and 2 with one exception
Overlapping is responsible for the good speedup figures

Main programmer task: find this scenario (if possible) and work around it



