
A nonblocking approach for the parallel
computation of the Laplacian

Julio Sánchez-Curto and Pedro Chamorro-Posada
Departamento de teoŕıa de la señal, comunicaciones e ingenieŕıa telemática

E.T.S.I. Telecomunicación

Universidad de Valladolid, Spain

ISPDC 2022: 21th International Symposium on Parallel and
Distributed Computing



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Outline

1 Motivation of our work

2 Classical approach

3 The nonblocking alternative

4 Performance tests and results

5 Discussion

6 Conclusions



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Motivation of our work

The Laplacian is a widely used operator in physics

It is usually embedded in Partial Differential Equations (PDEs)

Spectral methods constitute a way of solving PDEs

If Fourier Series are used, the Laplacian can be computed based on the

differentiation property

∇2u(x , y)
F←→ −(Ω2

1 +Ω2
2)U(Ω1,Ω2)

In terms of parallel computing,

Straightforward strategy: use of parallel FFTs routines

We, however, consider the whole kernel

It exploits the peculiar features of the Laplacian operator to get a more

efficient parallel implementation



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method

For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

y [n1, n2] =
1

N

N2−1∑
k2=0

N1−1∑
k1=0

−
(
k21+k22

)N2−1∑
n2=0

N1−1∑
n1=0

u[n1, n2]ω
−n1k1
N1

ω
−n2k2
N2

ω
n1k1
N1

ω
n2k2
N2

.

✲
✲
✲
✲
✲
✲

Forward

FFTs

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

Forward

FFTs

(columns)

Backward

FFTs

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Blocking

alltoall comm.

✛
✛
✛
✛
✛
✛

Backward

FFTs

(rows)

} }Forward 2D-FFT Backward 2D-FFT

✲ time

Four computation steps separated by communications

Dimensions are sequentially computed in a divide-and-conquer strategy

Blocking communications assure such strict sequencing



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

y [n1, n2] =
1

N1

N1−1∑
k1=0

−k21

N1−1∑
n1=0

u[n1, n2]ω
−k1n1
N1

ω
k1n1
N1

+
1

N2

N2−1∑
k2=0

−k22

N2−1∑
n2=0

u[n1, n2]ω
−k2n2
N2

ω
k2n2
N2

Left column: one kernel (rows) is computed while a
copy of data is currently been sent

Right column: the result on the rows is sent while
data on columns are still being computed

A final sum finishes the computation

Same number of blocks: communication bandwidth
and computational load FLOPS are the same

The potential benefits come from overlapping

✲
✲
✲
✲
✲
✲

✛
✛
✛
✛
✛
✛

1D comput.

kernel

(rows)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

✻✻✻✻✻✻

❄❄❄❄❄❄

1D comput.

kernel

(columns)

✒
✒

✠
✠

✒
✒

✠
✠
✒

✠
✒✠

✒
✒

✠
✠

✒
✒

✠
✠✒
✠✒✠

Nonblocking

alltoall comm.

}+
✲ time



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Performance tests and results

Our approach implemented in C. Nonblocking communications rely on the
MPI Ialltoall function and local computations on the FFTW

Classical solution based on the 2D FFT of the MPI-FFTW library

Both solutions are compared on SCAYLE (Supercomputación CAstilla Y
LEón), where each node has 2 Haswell (octa-core) processors

Speedup figures for different problem sizes N = N1 × N2 and cores P

the overlapped solution provides a speedup (S) where 1 ≤ S ≤ 2

an exception always occurs at N/P2 = 210 (communication issue)

the FFTW-MPI replicates the cache miss for N/P2 = 211



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Discussion

Tests designed to answer whether overlapping is responsible for speedup

Elapsed, computation and communication times are separately calculated
for different problem sizes

Sum of computation and communication has been added to the figure

Computation evolves
linearly since FLOPS are
O(N logN)

Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Overlapping is represented by the difference between black and magenta

The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

However, no benefits are achieved when one prevails over the other



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it



Conclusions

1 An overlapped implementation for the parallel computation of the Laplace
has been presented

2 Inherent features of the operator are exploited leading to data
independency

3 Computation and communications jobs are overlapped based on
nonblocking communications

4 Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

5 Speedup lies between 1 and 2 with one exception

6 Overlapping is responsible for the good speedup figures

7 Main programmer task: find this scenario (if possible) and work around it


