

A nonblocking approach for the parallel computation of the Laplacian

Julio Sánchez-Curto and Pedro Chamorro-Posada

Departamento de teoría de la señal, comunicaciones e ingeniería telemática

E.T.S.I. Telecomunicación

Universidad de Valladolid, Spain

ISPDC 2022: 21th International Symposium on Parallel and
Distributed Computing

Outline

Outline

① Motivation of our work

Outline

- ① Motivation of our work
- ② Classical approach

Outline

- ① Motivation of our work
- ② Classical approach
- ③ The nonblocking alternative

Outline

- ❶ Motivation of our work
- ❷ Classical approach
- ❸ The nonblocking alternative
- ❹ Performance tests and results

Outline

- ① Motivation of our work
- ② Classical approach
- ③ The nonblocking alternative
- ④ Performance tests and results
- ⑤ Discussion

Outline

- ❶ Motivation of our work
- ❷ Classical approach
- ❸ The nonblocking alternative
- ❹ Performance tests and results
- ❺ Discussion
- ❻ Conclusions

Motivation of our work

Motivation of our work

- The Laplacian is a widely used operator in physics

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)
- Spectral methods constitute a way of solving PDEs

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)
- Spectral methods constitute a way of solving PDEs
- If Fourier Series are used, the Laplacian can be computed based on the differentiation property

$$\nabla^2 u(x, y) \xleftrightarrow{\mathcal{F}} -(\Omega_1^2 + \Omega_2^2) U(\Omega_1, \Omega_2)$$

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)
- Spectral methods constitute a way of solving PDEs
- If Fourier Series are used, the Laplacian can be computed based on the differentiation property

$$\nabla^2 u(x, y) \xleftrightarrow{\mathcal{F}} -(\Omega_1^2 + \Omega_2^2) U(\Omega_1, \Omega_2)$$

In terms of parallel computing,

- Straightforward strategy: use of parallel FFTs routines

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)
- Spectral methods constitute a way of solving PDEs
- If Fourier Series are used, the Laplacian can be computed based on the differentiation property

$$\nabla^2 u(x, y) \xleftrightarrow{\mathcal{F}} -(\Omega_1^2 + \Omega_2^2) U(\Omega_1, \Omega_2)$$

In terms of parallel computing,

- Straightforward strategy: use of parallel FFTs routines
- We, however, consider the whole kernel

Motivation of our work

- The Laplacian is a widely used operator in physics
- It is usually embedded in Partial Differential Equations (PDEs)
- Spectral methods constitute a way of solving PDEs
- If Fourier Series are used, the Laplacian can be computed based on the differentiation property

$$\nabla^2 u(x, y) \xleftrightarrow{\mathfrak{F}} -(\Omega_1^2 + \Omega_2^2) U(\Omega_1, \Omega_2)$$

In terms of parallel computing,

- Straightforward strategy: use of parallel FFTs routines
- We, however, consider the whole kernel
- It exploits the peculiar features of the Laplacian operator to get a more efficient parallel implementation

Classical approach

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method

Classical approach

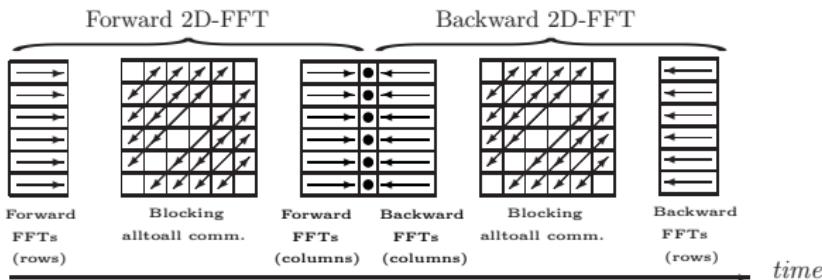
Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

$$y[n_1, n_2] = \frac{1}{N} \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} - (k_1^2 + k_2^2) \left(\sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-n_1 k_1} \omega_{N_2}^{-n_2 k_2} \right) \omega_{N_1}^{n_1 k_1} \omega_{N_2}^{n_2 k_2}.$$

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

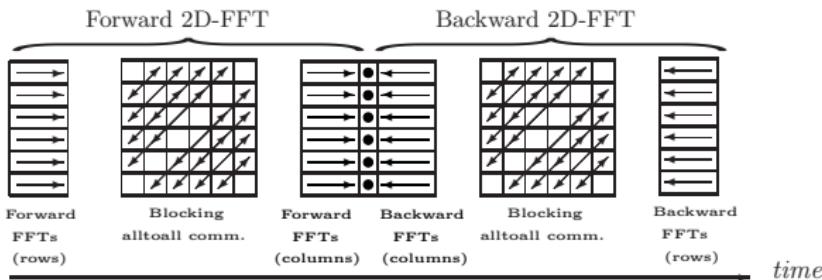
$$y[n_1, n_2] = \frac{1}{N} \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} - (k_1^2 + k_2^2) \left(\sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-n_1 k_1} \omega_{N_2}^{-n_2 k_2} \right) \omega_{N_1}^{n_1 k_1} \omega_{N_2}^{n_2 k_2}.$$



Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

$$y[n_1, n_2] = \frac{1}{N} \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} - (k_1^2 + k_2^2) \left(\sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-n_1 k_1} \omega_{N_2}^{-n_2 k_2} \right) \omega_{N_1}^{n_1 k_1} \omega_{N_2}^{n_2 k_2}.$$

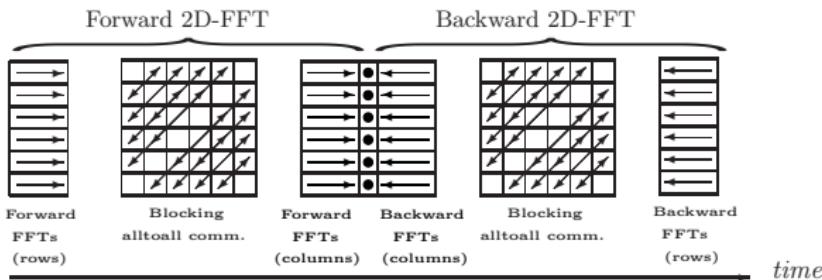


- Four computation steps separated by communications

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

$$y[n_1, n_2] = \frac{1}{N} \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} - (k_1^2 + k_2^2) \left(\sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-n_1 k_1} \omega_{N_2}^{-n_2 k_2} \right) \omega_{N_1}^{n_1 k_1} \omega_{N_2}^{n_2 k_2}.$$

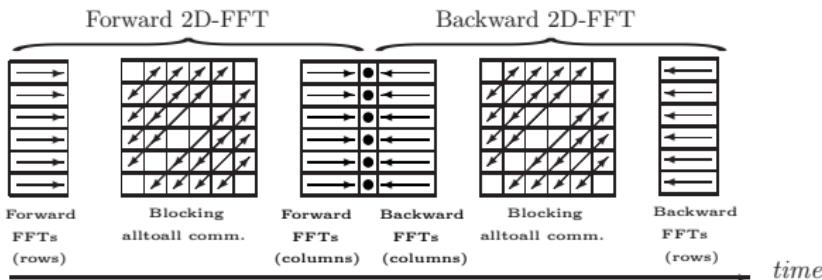


- Four computation steps separated by communications
- Dimensions are sequentially computed in a divide-and-conquer strategy

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

$$y[n_1, n_2] = \frac{1}{N} \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} - (k_1^2 + k_2^2) \left(\sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-n_1 k_1} \omega_{N_2}^{-n_2 k_2} \right) \omega_{N_1}^{n_1 k_1} \omega_{N_2}^{n_2 k_2}.$$



- Four computation steps separated by communications
- Dimensions are sequentially computed in a divide-and-conquer strategy
- **Blocking communications** assure such **strict sequencing**

The inherent overlapping in the Laplacian

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

The inherent overlapping in the Laplacian

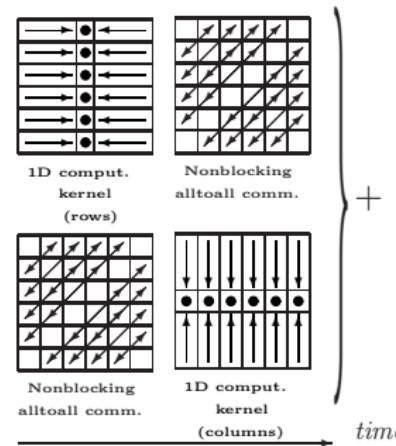
The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

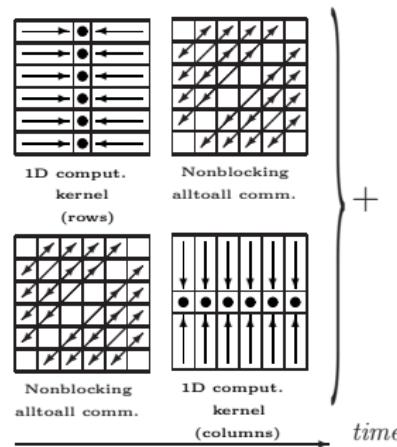


The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

- Left column: one kernel (rows) is computed while a copy of data is currently been sent

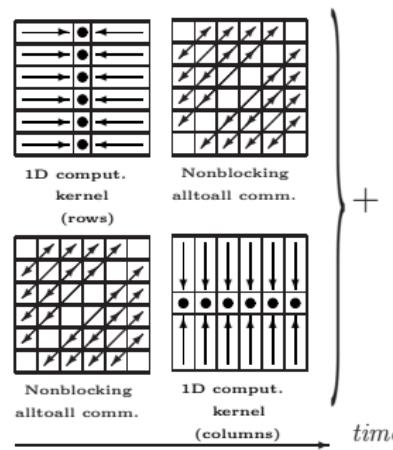


The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

- Left column: one kernel (rows) is computed while a copy of data is currently been sent
- Right column: the result on the rows is sent while data on columns are still being computed

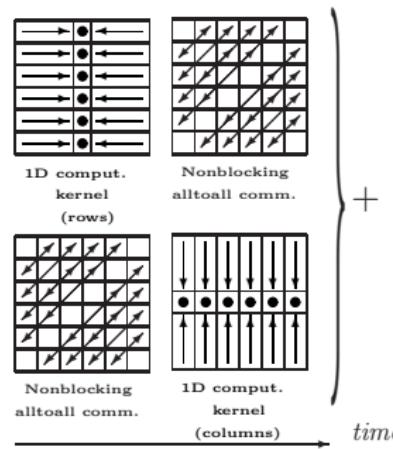


The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

- Left column: one kernel (rows) is computed while a copy of data is currently been sent
- Right column: the result on the rows is sent while data on columns are still being computed
- A final sum finishes the computation

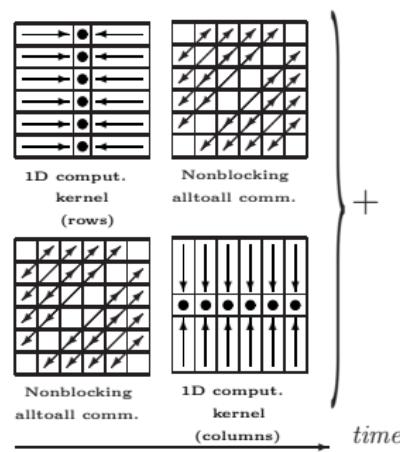


The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

- Left column: one kernel (rows) is computed while a copy of data is currently been sent
- Right column: the result on the rows is sent while data on columns are still being computed
- A final sum finishes the computation
- Same number of blocks: communication bandwidth and computational load FLOPS are the same

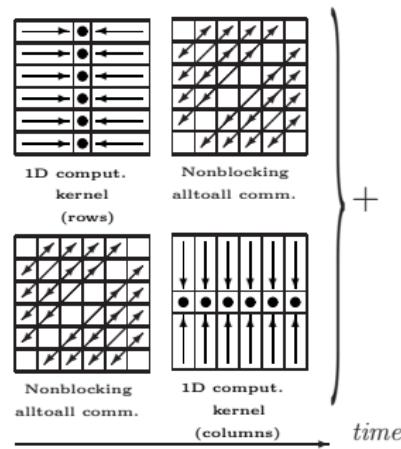


The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two independent 1D problems

$$y[n_1, n_2] = \frac{1}{N_1} \sum_{k_1=0}^{N_1-1} \left(-k_1^2 \sum_{n_1=0}^{N_1-1} u[n_1, n_2] \omega_{N_1}^{-k_1 n_1} \right) \omega_{N_1}^{k_1 n_1} + \frac{1}{N_2} \sum_{k_2=0}^{N_2-1} \left(-k_2^2 \sum_{n_2=0}^{N_2-1} u[n_1, n_2] \omega_{N_2}^{-k_2 n_2} \right) \omega_{N_2}^{k_2 n_2}$$

- Left column: one kernel (rows) is computed while a copy of data is currently been sent
- Right column: the result on the rows is sent while data on columns are still being computed
- A final sum finishes the computation
- Same number of blocks: communication bandwidth and computational load FLOPS are the same
- The potential benefits come from overlapping



Performance tests and results

Performance tests and results

- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW

Performance tests and results

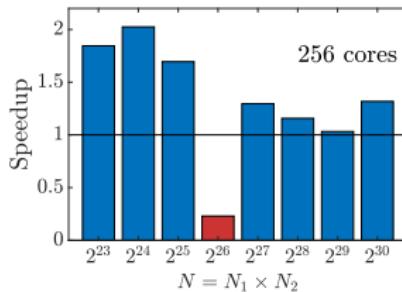
- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library

Performance tests and results

- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library
- Both solutions are compared on SCAYLE (*Supercomputación CAstilla Y LEón*), where each node has 2 Haswell (octa-core) processors

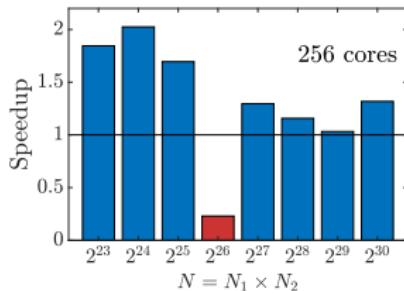
Performance tests and results

- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library
- Both solutions are compared on SCAYLE (*Supercomputación CAstilla Y LEón*), where each node has 2 Haswell (octa-core) processors
- Speedup figures for different problem sizes $N = N_1 \times N_2$ and cores P



Performance tests and results

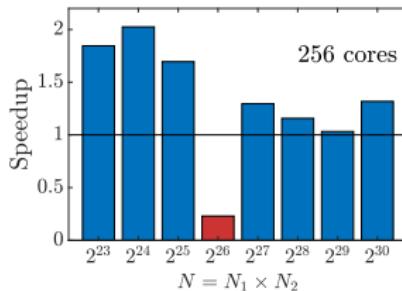
- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library
- Both solutions are compared on SCAYLE (*Supercomputación CAstilla Y LEón*), where each node has 2 Haswell (octa-core) processors
- Speedup figures for different problem sizes $N = N_1 \times N_2$ and cores P



- the overlapped solution provides a speedup (S) where $1 \leq S \leq 2$

Performance tests and results

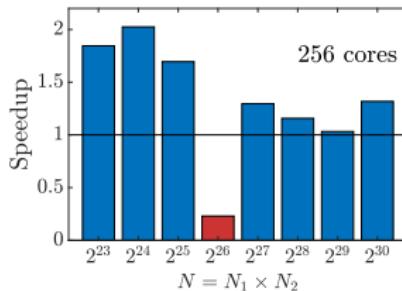
- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library
- Both solutions are compared on SCAYLE (*Supercomputación CAstilla Y LEón*), where each node has 2 Haswell (octa-core) processors
- Speedup figures for different problem sizes $N = N_1 \times N_2$ and cores P



- the overlapped solution provides a speedup (S) where $1 \leq S \leq 2$
- an **exception** always occurs at $N/P^2 = 2^{10}$ (communication issue)

Performance tests and results

- Our approach implemented in C. Nonblocking communications rely on the MPI_Ialltoall function and local computations on the FFTW
- Classical solution based on the 2D FFT of the MPI-FFTW library
- Both solutions are compared on SCAYLE (*Supercomputación CAstilla Y LEón*), where each node has 2 Haswell (octa-core) processors
- Speedup figures for different problem sizes $N = N_1 \times N_2$ and cores P



- the overlapped solution provides a speedup (S) where $1 \leq S \leq 2$
- an **exception** always occurs at $N/P^2 = 2^{10}$ (communication issue)
- the FFTW-MPI replicates the cache miss for $N/P^2 = 2^{11}$

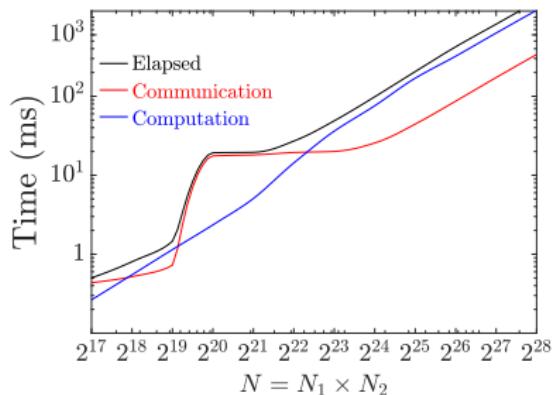
Discussion

Discussion

- Tests designed to answer whether overlapping is responsible for speedup

Discussion

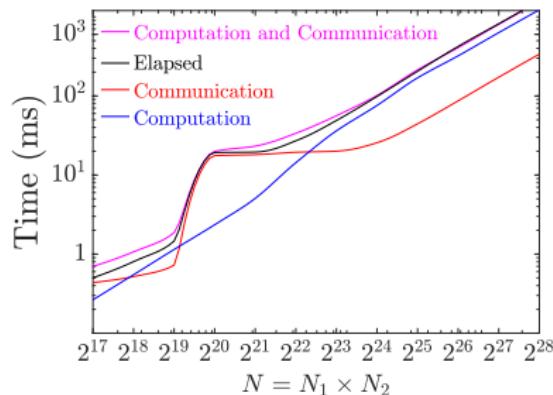
- Tests designed to answer whether overlapping is responsible for speedup
- **Elapsed**, **computation** and **communication** times are separately calculated for different problem sizes



- **Computation** evolves linearly since FLOPS are $\mathcal{O}(N \log N)$
- **Communication** undergoes the cache miss
- **Elapsed** is NOT the sum of both

Discussion

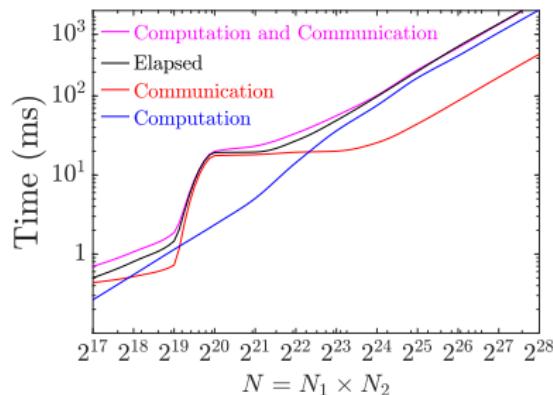
- Tests designed to answer whether overlapping is responsible for speedup
- **Elapsed**, **computation** and **communication** times are separately calculated for different problem sizes
- **Sum of computation and communication** has been added to the figure



- **Computation** evolves linearly since FLOPS are $\mathcal{O}(N \log N)$
- **Communication** undergoes the cache miss
- **Elapsed** is NOT the sum of both

Discussion

- Tests designed to answer whether overlapping is responsible for speedup
- **Elapsed**, **computation** and **communication** times are separately calculated for different problem sizes
- **Sum of computation and communication** has been added to the figure

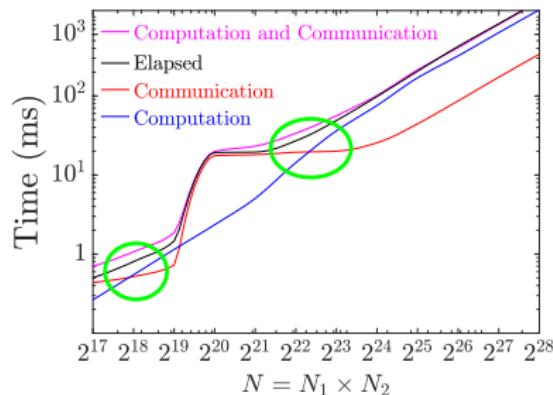


- **Computation** evolves linearly since FLOPS are $\mathcal{O}(N \log N)$
- **Communication** undergoes the cache miss
- **Elapsed** is NOT the sum of both

- Overlapping is represented by the difference between black and magenta

Discussion

- Tests designed to answer whether overlapping is responsible for speedup
- **Elapsed**, **computation** and **communication** times are separately calculated for different problem sizes
- **Sum of computation and communication** has been added to the figure

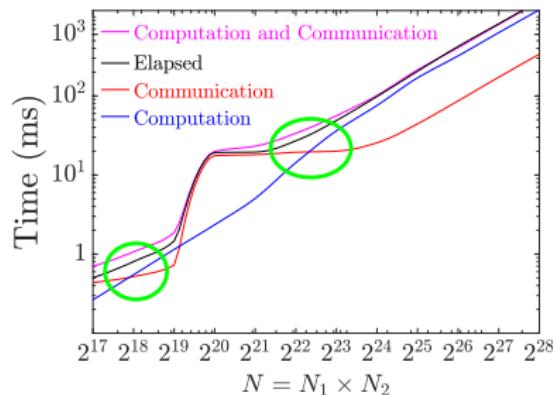


- **Computation** evolves linearly since FLOPS are $\mathcal{O}(N \log N)$
- **Communication** undergoes the cache miss
- **Elapsed** is NOT the sum of both

- Overlapping is represented by the difference between black and magenta
- The difference is maximum when the red and blue line cross, i.e. computation and communication times are comparable

Discussion

- Tests designed to answer whether overlapping is responsible for speedup
- **Elapsed**, **computation** and **communication** times are separately calculated for different problem sizes
- **Sum of computation and communication** has been added to the figure



- **Computation** evolves linearly since FLOPS are $\mathcal{O}(N \log N)$
- **Communication** undergoes the cache miss
- **Elapsed** is NOT the sum of both

- Overlapping is represented by the difference between black and magenta
- The difference is maximum when the red and blue line cross, i.e. computation and communication times are comparable
- However, no benefits are achieved when one prevails over the other

Conclusions

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency
- ③ Computation and communications jobs are overlapped based on nonblocking communications

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency
- ③ Computation and communications jobs are overlapped based on nonblocking communications
- ④ Our overlapped solution is compared to the conventional approach, based on parallel 2D FFTs

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency
- ③ Computation and communications jobs are overlapped based on nonblocking communications
- ④ Our overlapped solution is compared to the conventional approach, based on parallel 2D FFTs
- ⑤ Speedup lies between 1 and 2 with one exception

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency
- ③ Computation and communications jobs are overlapped based on nonblocking communications
- ④ Our overlapped solution is compared to the conventional approach, based on parallel 2D FFTs
- ⑤ Speedup lies between 1 and 2 with one exception
- ⑥ Overlapping is responsible for the good speedup figures

Conclusions

- ① An overlapped implementation for the parallel computation of the Laplace has been presented
- ② Inherent features of the operator are exploited leading to data independency
- ③ Computation and communications jobs are overlapped based on nonblocking communications
- ④ Our overlapped solution is compared to the conventional approach, based on parallel 2D FFTs
- ⑤ Speedup lies between 1 and 2 with one exception
- ⑥ Overlapping is responsible for the good speedup figures
- ⑦ Main programmer task: find this scenario (if possible) and work around it