A nonblocking approach for the parallel
computation of the Laplacian

Julio Sdnchez-Curto and Pedro Chamorro-Posada
Departamento de teoria de la sefial, comunicaciones e ingenieria telematica

E.T.S.l. Telecomunicacién

Universidad de Valladolid, Spain

ISPDC 2022: 21t International Symposium on Parallel and
Distributed Computing

Outline

@ Motivation of our work

Outline

@ Motivation of our work

@ Classical approach

Outline

@ Motivation of our work
@ Classical approach
© The nonblocking alternative

Outline

@ Motivation of our work
@ Classical approach
© The nonblocking alternative

@ Performance tests and results

Outline

@ Motivation of our work

@ Classical approach

© The nonblocking alternative
@ Performance tests and results

© Discussion

Outline

@ Motivation of our work

@ Classical approach

© The nonblocking alternative
@ Performance tests and results
@ Discussion

@ Conclusions

Motivation of our work

Motivation of our work

@ The Laplacian is a widely used operator in physics

Motivation of our work

@ The Laplacian is a widely used operator in physics

@ It is usually embedded in Partial Differential Equations (PDEs)

Motivation of our work

@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)

@ Spectral methods constitute a way of solving PDEs

Motivation of our work

@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)
@ Spectral methods constitute a way of solving PDEs

@ If Fourier Series are used, the Laplacian can be computed based on the

differentiation property
V2u(x,y) < —(Q2 + Q) U(Q1,)

Motivation of our work

@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)
@ Spectral methods constitute a way of solving PDEs

@ If Fourier Series are used, the Laplacian can be computed based on the

differentiation property
V2u(x,y) < —(Q2 + Q) U(Q1,)
In terms of parallel computing,

@ Straightforward strategy: use of parallel FFTs routines

Motivation of our work

@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)
@ Spectral methods constitute a way of solving PDEs

@ If Fourier Series are used, the Laplacian can be computed based on the

differentiation property
V2u(x,y) < —(Q2 + Q) U(Q1,)
In terms of parallel computing,

@ Straightforward strategy: use of parallel FFTs routines

@ We, however, consider the whole kernel

Motivation of our work

@ The Laplacian is a widely used operator in physics
@ It is usually embedded in Partial Differential Equations (PDEs)
@ Spectral methods constitute a way of solving PDEs

@ If Fourier Series are used, the Laplacian can be computed based on the

differentiation property
V2u(x,y) €% (@ + B)U(.)
In terms of parallel computing,
@ Straightforward strategy: use of parallel FFTs routines

@ We, however, consider the whole kernel

@ |t exploits the peculiar features of the Laplacian operator to get a more
efficient parallel implementation

Classical approach

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

1 Ma=img—1 Np—1N;—1)
2,2 —n —ngk; n1ky nok;
yln, m] = v Z Z — (klvkz) Z Z u[nl,ng]le 1 le2 272 lel IWNZZ 2.

kp=0 k=0 =0 n;=0

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

1 Ma—1m—1 Np—1Ny—1 . . ;
2,2 —n - k
ylm, m] = = - (klka) > D ulng mwy™ IWN;Z 2 w’,:/ll 1W,’:,ZZ 2.
ko=0 ki=0 no=0 nq=0
2 1 2 1
Forward 2D-FFT Backward 2D-FFT

Forward
FFTs alltoall comm. FFTs FFTs alltoall comm. FFTs

(rows) (columns) (columns) (rows)

time

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

1 Ma—1m—1 Np—1Ny—1 . . ;
2,2 —n - k
ylm, m] = = - (klka) > D ulng mwy™ IWN;Z 2 w’,:/ll 1W,’:,ZZ 2.
ko=0 ki=0 no=0 nq=0
2 1 2 1
Forward 2D-FFT Backward 2D-FFT

Forward
FFTs alltoall comm. FFTs FFTs alltoall comm. FFTs

(rows) (columns) (columns) (rows)

time

@ Four computation steps separated by communications

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

1 Ma—1m—1 Np—1Ny—1 . . ; B}
2 2 —n; —n; n n
yln, m] = v — (klvkz) Z Z u[nl,ng]o.)/vl1 le22 2 lellezzz.
ko=0 ki=0 no=0 nq=0
2 1 2 1
Forward 2D-FFT Backward 2D-FFT

Forward
FFTs alltoall comm. FFTs FFTs alltoall comm. FFTs

(rows) (columns) (columns) (rows)

time

@ Four computation steps separated by communications

@ Dimensions are sequentially computed in a divide-and-conquer strategy

Classical approach

Use of state-of-the-art parallel FFTs routines, based on the transpose method
For the two dimensional (2D) case:

1 Ma—1m—1 Np—1Ny—1 . . ; B}
2 2 —n; —n; n n
yln, m] = v — (klvkz) Z Z u[nl,ng]o.)/vl1 le22 2 lellezzz.
ko=0 ki=0 no=0 nq=0
2 1 2 1
Forward 2D-FFT Backward 2D-FFT

Forward
FFTs alltoall comm. FFTs FFTs alltoall comm. FFTs

(rows) (columns) (columns) (rows)

time

@ Four computation steps separated by communications
@ Dimensions are sequentially computed in a divide-and-conquer strategy

@ Blocking communications assure such strict sequencing

The inherent overlapping in the Laplacian

1 M-t Ny —1 . . 1 M-t Ny —1 . .
2 —kin n 2 — ko n
ylni, o] = m > -k > u[nl,nz]lel 1 lel 1+ﬁ2 > -2 > u["l,ﬂz]w,\,zz 2 wsz 2
ky =0

n=0 kp=0 ny=0

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

Np—1 Np—1 Np—1

Ny —1
! 2 —kyny | kam, 1 2 —kyny | kon
}’["17"2]21\7 > (*kl > u[nl,nz]lell le11+Nf2 > -2 > u[nlynZ]wszz wszz
1 k=0
1

n=0 kp=0 np=0

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

Ny —1

L Mt Ny —1 . . L Mt . .

2 —kin n 2 —kon n

ylny, no] = N >k 2 “["17"2]“’/\/11 1 w,\,ll 1+N7 > -k > u[nunz]w,\,z2 2 wsz 2
1 k=0 n=0 2 ky=0 =0

1D comput.
kernel

(rows)

il

i

Nonblocking 1D comput.

kernel

(columns)

alltoall comm.

time

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

L Mt Ny —1 . . L Mt Np—1 . .
2 —kin n 2 —kon n
ylny, no] = N >k 2 “["17"2]“’/\/11 1 w,\,ll 1+N7 > -k > u[nunz]w,\,z2 2 wsz 2
1 k=0 n=0 2 ky=0 =0

@ Left column: one kernel (rows) is computed while a
copy of data is currently been sent

X7
1D comput. Nonblocking
kernel alltoall comm.

(rows)

Pz

Nonblocking

alltoall comm.

time

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

L Mt Ny —1 . . L Mt Np—1 . .
2 —kin n 2 —kon n
yln1, mo] = n > -k uln, moJwy, 1 lel 1+N—2 > -k > u[nl,nZ]wsz 2 wsz 2

k1 =0 =0 kp=0 =0

@ Left column: one kernel (rows) is computed while a
copy of data is currently been sent

717
@ Right column: the result on the rows is sent while 1D comput. Nemblocking
data on columns are still being computed fornel sittestieemme

il

Nonblocking 1D comput.
alltoall comm. kernel

(columns) time

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

L Mt Ny —1 . . L Mt Np—1 . .
2 —kin n 2 —kon n
yln1, mo] = n > -k uln, moJwy, 1 lel 1+N—2 > -k > u[nl,nZ]wsz 2 wsz 2

k1 =0 =0 kp=0 =0
@ Left column: one kernel (rows) is computed while a
copy of data is currently been sent -
K|~
@ Right column: the result on the rows is sent while 1D comput. Nemblocking
data on columns are still being computed fornel sittestieemme
. - . P2
@ A final sum finishes the computation = l l l l l l
e 000 00
Nonblocking 1D comput.

alltoall comm. kernel

(columns) time

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

L Mt Ny —1 . . L Mt Np—1 . .
2 —kin n 2 —kon n
yln1, mo] = n > -k uln, moJwy, 1 lel 1+N—2 > -k > u[nl,nZ]wsz 2 wsz 2

k1 =0 n=0 kp=0 =0

@ Left column: one kernel (rows) is computed while a

copy of data is currently been sent -

K|~

@ Right column: the result on the rows is sent while 1D comput. Nemblocking

data on columns are still being computed fornel sittestieemme
@ A final sum finishes the computation Z = l l l l l l
@ Same number of blocks: communication bandwidth f f f f f f

and computational load FLOPS are the same

Nonblocking 1D comput.
alltoall comm. kernel

(columns) time

The inherent overlapping in the Laplacian

The linear property of the FFT turns a single 2D problem turns into two
independent 1D problems

L Mt Ny —1 . . L Mt Np—1 . .
2 —kin n 2 —kon n
yln1, mo] = n > -k uln, moJwy, 1 lel 1+N—2 > -k > u[nl,nZ]wsz 2 wsz 2

k1 =0 n=0 kp=0 =0

@ Left column: one kernel (rows) is computed while a

copy of data is currently been sent -

K|~

@ Right column: the result on the rows is sent while 1D comput. Nemblocking

data on columns are still being computed fornel sittestieemme
@ A final sum finishes the computation Z = l l l l l l
@ Same number of blocks: communication bandwidth f f f f f f

and computational load FLOPS are the same

Nonblocking 1D comput.

@ The potential benefits come from overlapping sficontt comm. - wornel time

Performance tests and results

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

@ Both solutions are compared on SCAYLE (Supercomputacién CAstilla Y
LEGn), where each node has 2 Haswell (octa-core) processors

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

@ Both solutions are compared on SCAYLE (Supercomputacién CAstilla' Y
LEGn), where each node has 2 Haswell (octa-core) processors

@ Speedup figures for different problem sizes N = N; x N, and cores P

o

256 cores

Speedup

0.5

0 22(5 22) 22') 22(v 227 225 22‘) 2&0
N=DNxN

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

@ Both solutions are compared on SCAYLE (Supercomputacién CAstilla' Y
LEGn), where each node has 2 Haswell (octa-core) processors

@ Speedup figures for different problem sizes N = N; x N, and cores P

o

256 cores

Speedup

0.5

0 22(5 22) 22') 22(v 227 225 22‘) 2&0
N=DNxN

@ the overlapped solution provides a speedup (S) where 1 < 5 <2

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

@ Both solutions are compared on SCAYLE (Supercomputacién CAstilla' Y
LEGn), where each node has 2 Haswell (octa-core) processors

@ Speedup figures for different problem sizes N = N; x N, and cores P

o

256 cores

Speedup

0.5

0 22(5 22) 22') 22(v 227 225 22‘) 2&0
N=DNxN

@ the overlapped solution provides a speedup (S) where 1 < 5 <2

@ an exception always occurs at N/P? = 2'° (communication issue)

Performance tests and results

@ Our approach implemented in C. Nonblocking communications rely on the
MPI_TIalltoall function and local computations on the FFTW

@ Classical solution based on the 2D FFT of the MPI-FFTW library

@ Both solutions are compared on SCAYLE (Supercomputacién CAstilla' Y
LEGn), where each node has 2 Haswell (octa-core) processors

@ Speedup figures for different problem sizes N = N; x N, and cores P

o

256 cores

Speedup

0.5

0 22(5 22) 22') 22(v 227 225 22‘) 2&0
N=DNxN

@ the overlapped solution provides a speedup (S) where 1 < 5 <2
@ an exception always occurs at N/P? = 2'° (communication issue)

@ the FFTW-MPI replicates the cache miss for N/P? = 2!

Discussion

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup

@ Elapsed, computation and communication times are separately calculated
for different problem sizes

@ Computation evolves
linearly since FLOPS are
O(Nlog N)

@ Communication
undergoes the cache miss

@ Elapsed is NOT the sum
of both

— Elapsed
_—10%}— Communication
Computation

17 918 919 920 921 922 923 924 925 926 927 928
211 2% 279 270 220 292 2% 2%% 220 20 290 2
N =N x Ny

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup

@ Elapsed, computation and communication times are separately calculated

for different problem sizes

@ Sum of computation and communication has been added to the figure

10% f— Computation and Communication
— Elapsed
102 L — Communication
é — Computation =
~— —
- 10!
£
SEN

917 918 919 920 921 922 923 924 925 926 927 928
N = N; x Ny

Computation evolves
linearly since FLOPS are
O(Nlog N)
Communication
undergoes the cache miss

Elapsed is NOT the sum
of both

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup

@ Elapsed, computation and communication times are separately calculated
for different problem sizes

@ Sum of computation and communication has been added to the figure

103 f— Computation and Communication
— Blapsed @ Computation evolves
2| — (o icati . .

o 107 Communication) linearly since FLOPS are
@ — Computation =
B R O(N log N)

10! N
g @ Communication
SN undergoes the cache miss

@ Elapsed is NOT the sum
of both

917 918 919 920 921 922 923 924 925 926 927 928
N = N; x Ny

@ Overlapping is represented by the difference between black and magenta

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup
@ Elapsed, computation and communication times are separately calculated
for different problem sizes

@ Sum of computation and communication has been added to the figure

103 f— Computation and Communication
— Blapsed @ Computation evolves
2| — (o icati . .
o 10° 7 Communication) linearly since FLOPS are
@ — Computation = Z
& —ca O(Nlog N)
o 10! ..
g @ Communication
& . undergoes the cache miss
INy=
= .
» @ Elapsed is NOT the sum
of both

217 218 219 220 22] 222 223 224 225 226 2‘27 2‘28
N =N xN,
@ Overlapping is represented by the difference between black and magenta
@ The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

Discussion

@ Tests designed to answer whether overlapping is responsible for speedup
@ Elapsed, computation and communication times are separately calculated
for different problem sizes

@ Sum of computation and communication has been added to the figure

103 F— Computation and Communication

— Blapsed @ Computation evolves
10 7;:2;“::;;;“" - linearly since FLOPS are
,/7/4 O(Nlog N)

)

A

o 10! ..

g @ Communication

B = undergoes the cache miss
= .
» @ Elapsed is NOT the sum

of both

217 218 219 220 22] 222 223 224 225 226 2‘27 2‘28
N =N xN,
@ Overlapping is represented by the difference between black and magenta
@ The difference is maximum when the red and blue line cross, i.e.
computation and computation times are comparable

@ However, no benefits are achieved when one prevails over the other

Conclusions

Conclusions

@ An overlapped implementation for the parallel computation of the Laplace
has been presented

Conclusions

@ An overlapped implementation for the parallel computation of the Laplace
has been presented

@ Inherent features of the operator are exploited leading to data
independency

Conclusions

@ An overlapped implementation for the parallel computation of the Laplace
has been presented

@ Inherent features of the operator are exploited leading to data
independency

© Computation and communications jobs are overlapped based on
nonblocking communications

Conclusions

o
(2]
o
4]

An overlapped implementation for the parallel computation of the Laplace
has been presented

Inherent features of the operator are exploited leading to data
independency

Computation and communications jobs are overlapped based on
nonblocking communications

Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

Conclusions

o
(2]
o
4]
(5]

An overlapped implementation for the parallel computation of the Laplace
has been presented

Inherent features of the operator are exploited leading to data
independency

Computation and communications jobs are overlapped based on
nonblocking communications

Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

Speedup lies between 1 and 2 with one exception

Conclusions

o
2]
3]
(4]
(5]
(6]

An overlapped implementation for the parallel computation of the Laplace
has been presented

Inherent features of the operator are exploited leading to data
independency

Computation and communications jobs are overlapped based on
nonblocking communications

Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

Speedup lies between 1 and 2 with one exception

Overlapping is responsible for the good speedup figures

Conclusions

o
2]
3]
o
o
(6]
(7]

An overlapped implementation for the parallel computation of the Laplace
has been presented

Inherent features of the operator are exploited leading to data
independency

Computation and communications jobs are overlapped based on
nonblocking communications

Our overlapped solution is compared to the conventional approach, based
on parallel 2D FFTs

Speedup lies between 1 and 2 with one exception
Overlapping is responsible for the good speedup figures

Main programmer task: find this scenario (if possible) and work around it

