
Analysis and Mitigation of Soft-Errors on
High Performance Embedded GPUs

Luca Sterpone
Sarah Azimi
Corrado De Sio

Filippo Parisi

2

Goals
§ A reliability analysis methodology for embedded General

Purpose GPUs (GPGPUs) adopting emulation-based fault
injection
– Injection of Single Event Upsets (SEUs)
– Instrumentation of the Streaming ASSembler (SASS)

§ A software mitigation method implementing dependable
computing strategies for GPGPUs
– Redundancy with negligible computational time overhead

3

Outline
§ Towards GPGPUs for embedded systems
§ Space and terrestrial radiation environment
§ Soft Errors effects and reliability analysis
§ Embedded GPUs computing scenario
§ Fault injection method and experimental results
§ Software mitigation and experimental results
§ Conclusions
§ Future works

4

Towards GPGPUs for embedded systems
§ GPGPU applications are nowadays expanding from the

domain of High Performance Computing (HPC)
§ Embedded GPUs are one of the main solutions for self-

driving cars and autonomous vehicles

[NVIDIA courtesy]

5

Towards GPGPUs for embedded systems
§ Towards an Integrated GPU Accelerated SoC as a Flight

Computer for Small Satellites (CubeSat) or more…

[Nanoracks courtesy] [NASA / ESA / CSA]

6

Space Radiation Environment
§ Towards safety and mission-critical applications

SPACE Environment

Galactic Cosmic Ray
Protons

Heavy Ions

Solar wind and flares
Protons

Heavy Ions
Van Allen Belt

Protons
Electrons

Supernova explosions
Planets collisions

Star collisions

7

Terrestrial Radiation Environment
§ Galactic Cosmic Ray interacts with

atmosphere
§ Generation of a shower of energetic

particles
– Especially Neutrons
– JEDEC JESD89A Standard reports up to 13 n/(cm2・

h) at sea level

§ Neutrons affect modern distributed
computer systems and architectures

8

Soft Error
§ A radiation particle can generate a Soft Error also known as

Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip

[Baumann 2005]

9

Soft Error
§ A radiation particle can generate a Soft Error also known as

Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip

Single Event Upsets (SEUs)

0 1 0 0
0 0 0 0
0 0 1 1

0 1 0 0
0 0 0 1
0 0 1 1

10

Reliability analysis methodologies

Real Devices + Real Faults

Costly (time, money, skills)

Lack of Control

Emulate Specific Fault Model

Good Granularity

Slow

Usually, not involving whole hw-level
(à not comprehensive)

Radiation Testing Fault Simulation or Emulation

11

Reliability analysis - Simulators
§ Several simulators have been developed for micro-

architectural level analysis
§ These tools mimic the parallelism implemented in GPGPUs

– Functional GPGPU simulator Barra
– Heterogenous CPU-GPU simulator gem5-gpu
– GPGPU-sim

§ Useful for early stage reliability investigations
– Fault injection on data variables and streams

§ Inaccurate for SEU injection in architectural resources

12

Reliability analysis – Micro Architectural Fault Injections
§ Development of approaches able to exploit the Streaming

ASSembler (SASS) and to inject faults
§ SASSIFI was proposed to inject faults in different locations

– Register files
– Shared memories
– Instruction operands

§ NVBitFI was proposed to intercept dynamic kernels call and
insert error without modifying the source code
– Without affecting instruction scheduling or register allocations of the

target program

13

§ GPGPU devices employ a Single Instruction Multiple Threads
(SIMT) model
– The same instructions are executed by many cores inside the device

§ Each core maintains its own execution flow as a thread
– Threads may diverge to perform different tasks
– Threads may converge via synchronization or barrier instructions

Embedded GPUs computing scenario

14

Embedded GPUs computing scenario

HOST RAM

EXECUTE
MULTIPLE
THREADS

. . .

GPU RAM

§ Data must be moved from
HOST to DEVICE memory in
order to be processed on the
GPU

§ When data is processed, and
no more needed on the GPU,
it is transferred back to HOST

15

Embedded GPUs computing scenario
Software Hardware

Thread
GPU
core

Thread Block
Streaming

Multiprocessor

...
Grid GPU

§ Once the CUDA application is
launched, users could organize
threads in Blocks and Grids

§ Tasks are not always perfectly
distributed in threads

§ The same fault in terms of
corrupted bits and instructions in
different threads could yield
different results

§ The context management is
performed by the GPU runtime
system

16

§ NVIDIA CUDA runtime environment (runtime APIs) provides
high-level features
– Context management

§ Kernel invokes syntax extension and PTX for Just-In-Time
(JIT) compilation

§ JIT compiler transforms PTX code to device specific SASS
§ We exploited NVIDIA Driver API (DAPI)

Compilation of source code

CUDA Source Code SASS Instructions Cubin File for
Loading in GPU

Extracting SASS Instructions Inf. For Fault
Injection Platform

DAPI

17

§ The developed fault injection tool CUBINJ allows two kinds
of bitflips affecting any type of instruction
– In all the threads
– Only in certain specific threads

§ The fault injection tool consists on two flows
– Host Application
– Fault Injection

Embedded GPUs computing scenario

18

Host Application Execution Flow
Start

Select CUDA
device

Create CUDA
Context

Enable Profiling
(CUPTI)

Load Kernel
from cubin file

Context clean
up

Input
Preparation

Launch Kernel

Retrieve
Output

Memory
Clean Up

CUPTI Event
Handler

Kernel Elapsed
Time

End Application Specific

Kernel Start/Stop trigger

19

Fault Injection Flow
Kernel.cu Kernel.cubin

Kernel Execution

Fault Classification

nvcc

cu
ob

jd
um

p

Golden SASS
map

Fault List

Kernel (function)
name

SASS Instruction
index

Fault Injection

Faulty cubin file

Kernel Execution

Golden Kernel
Output

cu
ob

jd
um

p

Faulty SASS map

Fault List
Generation

SASS corruption
identification

Faulty Kernel
Output

1. Golden Run execution

1

20

Fault Injection Flow
Kernel.cu Kernel.cubin

Kernel Execution

Fault Classification

nvcc

cu
ob

jd
um

p

Golden SASS
map

Fault List

Kernel (function)
name

SASS Instruction
index

Fault Injection

Faulty cubin file

Kernel Execution

Golden Kernel
Output

cu
ob

jd
um

p

Faulty SASS map

Fault List
Generation

SASS corruption
identification

Faulty Kernel
Output

1. Golden Run execution
2. Cuda object dump for

fault list generation

1

2

21

Fault Injection Flow
Kernel.cu Kernel.cubin

Kernel Execution

Fault Classification

nvcc

cu
ob

jd
um

p

Golden SASS
map

Fault List

Kernel (function)
name

SASS Instruction
index

Fault Injection

Faulty cubin file

Kernel Execution

Golden Kernel
Output

cu
ob

jd
um

p

Faulty SASS map

Fault List
Generation

SASS corruption
identification

Faulty Kernel
Output

1. Golden Run execution
2. Cuda object dump for

fault list generation
3. Fault List Generation

1. Kernel identification
2. SASS index

1

2

3

22

Fault Injection Flow
Kernel.cu Kernel.cubin

Kernel Execution

Fault Classification

nvcc

cu
ob

jd
um

p

Golden SASS
map

Fault List

Kernel (function)
name

SASS Instruction
index

Fault Injection

Faulty cubin file

Kernel Execution

Golden Kernel
Output

cu
ob

jd
um

p

Faulty SASS map

Fault List
Generation

SASS corruption
identification

Faulty Kernel
Output

1. Golden Run execution
2. Cuda object dump for

fault list generation
3. Fault List Generation

1. Kernel identification
2. SASS index

4. Fault Injection execution
1. Cubin file context
2. Kernel extraction and location
3. Injection within resource

1

2

3

4

23

Fault Injection Flow
Kernel.cu Kernel.cubin

Kernel Execution

Fault Classification

nvcc

cu
ob

jd
um

p

Golden SASS
map

Fault List

Kernel (function)
name

SASS Instruction
index

Fault Injection

Faulty cubin file

Kernel Execution

Golden Kernel
Output

cu
ob

jd
um

p

Faulty SASS map

Fault List
Generation

SASS corruption
identification

Faulty Kernel
Output

1. Golden Run execution
2. Cuda object dump for

fault list generation
3. Fault List Generation

1. Kernel identification
2. SASS index

4. Fault Injection execution
1. Cubin file context
2. Kernel extraction and location
3. Injection within resource

5. Fault Classification

1

2

3

4

5

24

Back end on Fault Injection Execution

Host
App

Binary

Cubin
Binary

CUBINJ
Cubin File
Context

Kernel0
Cubin
Binary

Kernel1
Cubin
BinaryKerneli

Cubin
Binary

CUBINJ
Kernel j

Extraction and
Location k

Kernelj

SASS instructionk

ef5c000000080405

SASS instruction
“@!P0IADD R5, R5, R6 ;”

Inject 55th bit

SASS injected instruction
“@!P0ALD.PHYS R5, a[R4], R0 ;”

efdc000000080405

25

Error Classification
§ Silent Data Corruption (SDC)

– There is a mismatch(es) with the faulty-free run
§ Detected Unrecoverable Error (DUE)

– Kernel did not finish normally as DAPI function call returns an error
– Host application is not able to copy the results from GPGPU device memory

to host
§ Hang

– Execution plus the memory copy operations are not able to finish within a
detection latency time

§ Masked
– Kernel finished normally and no error is observed in the output.

26

Experimental Results

Benchmark Selected Thread SASS
instructions [#]

Kernel time
[ns]

Faults
[#]

matSum All Threads 18 4,483 1,536
Thread 0 24 4,489 832

matMul
All Threads 234 2,361,958 19,908

Thread 0 456 2,529,229 14,144

histogram

All Threads 354 839,492 30,208

Thread 0 762 849,401 22,976

Thread 1 762 848,201 22,976

27

Error Rate Distribution

14
.9

9%

14
.3

0%

13
.2

8% 15
.5

0%

8.
75

%

8.
80

%

8.
82

%11
.4

8%

7.
25

%

27
.6

7% 30
.5

3%

6.
83

%

5.
91

%

5.
44

%8.
14

%

9.
58

%

0.
46

%

0.
36

%

14
.7

8%

12
.1

6%

12
.6

4%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SDC DUE Hang

matMul

All Threads Thread 0

matSum

All Threads Thread 0

histogram

All Threads Thread 0 Thread 1

Er
ro

r R
at

e
Di

st
rib

ut
io

n
[%

]

28

Silent Data Corruption

Benchmark
Selected
Thread

One Error
[%]

All Wrong
[%]

Average
Errors

[#]

matSum
All Threads 0.00 61.76 126.53

Thread 0 96.90 0.00 1.03

matMul
All Threads 0.00 73.35 254,414.31

Thread 0 87.24 0.00 6.51

histogram

All Threads 0.53 53.33 181.99

Thread 0 74.02 0.89 39.70
Thread 1 72.77 0.89 39.50

29

Performance Comparison

17
.1

6%

10
.0

0%

21
.9

4%

0.
89

%

11
.3

5%

0.
03

%

1.
55

% 4.
04

%

0.
84

%

0.
75

%

0.
89

%

0.
00

%

0

0.05

0.1

0.15

0.2

0.25

All Threads Thread 0 Thread 1 (histogram only)

matMul

SDC Masked

matMul histogramFa
ul

ts
 C

au
sin

g
Ke

rn
el

 E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d
[%

]

30

Soft Error Mitigation
§ Tunable according to the computational characteristics of a

typical application running on embedded GPGPUs
– Initialization
– synchronization with the

external data sample
– data stream host to GPU

memory
– running the kernel threads
– data stream from GPU to

host memory

Init Host -> Device

Thread #1

Thread #2

Thread #3

Thread #i

Threads
Stream

Repeated Iteration

Application Event Timeline t

Async Device -> Host

31

Soft Error Mitigation
§ Adapted asynchronous memory copy functions from device

to host
§ Execution of error detection and comparison threads

– Simultaneous execution during data transfer
– Periodical activation (Beacon Threads)

32

Experimental Results
§ We performed the test on the Jetson TX2 NVIDIA

development board
§ We used a data package of around 12MB
§ Injection of 120K single bit flip

Benchmark
SDC
[%]

Detected
SDC
[%]

Detection
Latency

[ms]

Original 96.7 - -
Kernel Dup Single Mem 68.2 84.7 2.14

Beacon OverDT Single Mem 12.5 98.0 1.20
Duplicated Kernel and Mem 23.8 87.4 3.08

Beacon OverDT Duplicated Mem 4.7 98.8 1.08

33

Performance Comparison

1,30

0,20 0,24

0,86

1,82

0,46 0,49

0,87

1,33

0,20 0,26

0,87

3,14

0,45

1,03

1,65

2,67

0,24
0,57

1,66

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Cycle Duration Kernel_Comp D2H DT H2D DT

Timing Performances

Original App Kernel Threads Dup (cuda)

Beacon OverDT 1 (single mem) Threads Dup (cuda+mem)

Beacon OverDT 1 (double mem)

[ms]

The developed beacon threads over data
transfer have an advantage of 37% with
respect with the CUDA kernel thread’s
duplication

34

Conclusions
§ A new reliability analysis and mitigation approach for

GPGPU is presented
§ Analysis is based on a fault injection solution targeting the

SASS instructions executed on real devices
– CUBINJ is able to target all threads, or some specific thread(s)

§ The developed beacon thread mitigation solution shows an
improved resiliency of more than 37%
– Negligible performance degradation

35

Future works
§ We are building SASS encoding maps to further exploit the

possibility for instrumentation to support the fault injection
environment

§ Extend the fault injection analysis and mitigation on GPGPU
clusters for HPC

Thank you
luca.sterpone@polito.it

37

Reliability analysis
§ Radiation experiments have been performed using

accelerated beam
– Focus on various aspects of the analysis and mitigations of soft errors in

GPGPUs
§ Radiation beam hits the device indistinctively

– Besides, internal device implementation is not available

38

Reliability analysis – Architectural models
§ Development of architectural models in order to perform a

more detailed analysis
– CUDA binary of streaming multiprocessor computation based on NVIDIA

G80 - FlexGrip

39

Transparent Scalability
§ The GPU runtime system can execute thread blocks in any

order relative to each other
§ This flexibility enables to execute the same application code

on hardware with different numbers of SM
Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

SM2

Convolutional Neural Networks

40

Panda 79 %
Cat 11 %
Clown 6 %
Penguin 4 %

41

NVBitFI
Benchmark SASS instructions

[#]
Kernel time

[ns]
matSum 18 56,801
matMul 234 1,671,000

histogram 354 1,425,500

46.17%

69.22%

23.01%

51.66%

10.09%

27.04%

2.17%

20.69%

49.95%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

matSum matMul histogram

SDC DUE Masked

Er
ro

r R
at

e
[%

]

