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Goals

= A reliability analysis methodology for embedded General
Purpose GPUs (GPGPUs) adopting emulation-based fault
injection
— Injection of Single Event Upsets (SEUS)
— Instrumentation of the Streaming ASSembler (SASS)

= A software mitigation method implementing dependable
computing strategies for GPGPUs
— Redundancy with negligible computational time overhead
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Outline

= Towards GPGPUs for embedded systems

= Space and terrestrial radiation environment

= Soft Errors effects and reliability analysis

= Embedded GPUs computing scenario

= Fault injection method and experimental results
= Software mitigation and experimental results

= Conclusions

= Future works



I
Towards GPGPUs for embedded systems

= GPGPU applications are nowadays expanding from the
domain of High Performance Computing (HPC)

= Embedded GPUs are one of the main solutions for self-
driving cars and autonomous vehicles

[NVIDIA courtesy]
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Towards GPGPUs for embedded systems

= Towards an Integrated GPU Accelerated SoC as a Flight
Computer for Small Satellites (CubeSat) or more...

[Nanoracks courtesy] [NASA/ESA/ S] .
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Space Radiation Environment

= Towards safety and mission-critical applications
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Terrestrial Radiation Environment

= Galactic Cosmic Ray interacts with
atmosphere

= Generation of a shower of energetic

particles
— Especially Neutrons

— JEDEC JESDB89A Standard reports up to 13 n/(cm? -
h) at sea level

= Neutrons affect modern distributed
computer systems and architectures




Soft Error

= A radiation particle can generate a Soft Error also known as

Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip
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Soft Error

= A radiation particle can generate a Soft Error also known as
Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip
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Reliability analysis methodologies

Radiation Testing Fault Simulation or Emulation
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Reliability analysis - Simulators

= Several simulators have been developed for micro-
architectural level analysis

= These tools mimic the parallelism implemented in GPGPUs
— Functional GPGPU simulator Barra

— Heterogenous CPU-GPU simulator gemS-gpu
— GPGPU-sim

= Useful for early stage reliability investigations
— Fault injection on data variables and streams

= Inaccurate for SEU injection in architectural resources
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Reliability analysis — Micro Architectural Fault Injections

= Development of approaches able to exploit the Streaming
ASSembler (SASS) and to inject faults

= SASSIFI was proposed to inject faults in different locations
— Register files
— Shared memories
— Instruction operands

= NVBItFl was proposed to intercept dynamic kernels call and
insert error without modifying the source code

— Without affecting instruction scheduling or register allocations of the
target program
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Embedded GPUs computing scenario

= GPGPU devices employ a Single Instruction Multiple Threads
(SIMT) model

— The same instructions are executed by many cores inside the device
= Each core maintains its own execution flow as a thread

— Threads may diverge to perform different tasks
— Threads may converge via synchronization or barrier instructions




Embedded GPUs computing scenario

= Data must be moved from HOST RAM
HOST to DEVICE memory in ==- GPU RAM EXECUTE
order to be processed on the I ——— MULTIPLE
GPU | |M!7 —

= When data is processed, and | M-
no more needed on the GPU, .I
it is transferred back to HOST




Embedded GPUs computing scenario

Software Hardware = Once the CUDA application is
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Compilation of source code

= NVIDIA CUDA runtime environment (runtime APIs) provides
high-level features
— Context management

= Kernel invokes syntax extension and PTX for Just-In-Time
(JIT) compilation

= JIT compiler transforms PTX code to device specific SASS

= We exploited NVIDIA Driver API (DAPI)
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Embedded GPUs computing scenario

* The developed fault injection tool CUBINJ allows two kinds
of bitflips affecting any type of instruction

— In all the threads

— Only in certain specific threads

= The fault injection tool consists on two flows
— Host Application
— Fault Injection




Host Application Execution Flow
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Fault Injection Flow

1. Golden Run execution
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Fault Injection Flow
1. Golden Run execution

e 2. Cuda object dump for
[ fault list generation
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Fault Injection Flow
] 1. Golden Run execution
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Fault Injection Flow
1. Golden Run execution
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Back end on Fault Injection Execution

CUBINJ
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Error Classification

= Silent Data Corruption (SDC)
— There is a mismatch(es) with the faulty-free run
= Detected Unrecoverable Error (DUE)

— Kernel did not finish normally as DAPI function call returns an error

— Host application is not able to copy the results from GPGPU device memory
to host

= Hang

— Execution plus the memory copy operations are not able to finish within a
detection latency time

= Masked

— Kernel finished normally and no error is observed in the output.



Experimental Results

Benchmark | Selected Thread SASS Kernel time
mstructlons [#] [ns]

All Threads 4,483 1,536
Thread O 24 4,489 832
All Threads 234 2,361,958 19,908
Thread 0 456 2,529,229 14,144
All Threads 354 839,492 30,208
Thread 0 762 849,401 22,976

Thread 1 762 848,201 22,976
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Silent Data Corruption

oo | S N MR B

Benchmark Thread [%] [%] 4

m All Threads 0.00 61.76 126.53
Thread 0 96.90 0.00 1.03

m All Threads 0.00 73.35 254,414.31
Thread 0 87.24 0.00 6.51

All Threads 0.53 53.33 181.99

Thread 0 74.02 0.89 39.70
Thread 1 72.77 0.89 39.50




Performance Comparison
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I
Soft Error Mitigation

= Tunable according to the computational characteristics of a

typical application running on embedded GPGPUs

Repeated Iteration |
Application Event Timeline

t
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— synchronization with the
external data sample l

— data stream host to GPU — . \
memory

— running the kernel threads

— data stream from GPU to __Threads
host memory
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Soft Error Mitigation

= Adapted asynchronous memory copy functions from device
to host

= Execution of error detection and comparison threads
— Simultaneous execution during data transfer
— Periodical activation (Beacon Threads)
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Experimental Results

= We performed the test on the Jetson TX2 NVIDIA
development board

= We used a data package of around 12MB
= Injection of 120K single bit flip

Detected Detection

Benchmark SDC Latency
[%] [ms]

96.7 - -

Kernel Dup Single Mem 68.2 84.7 2.14
Beacon OverDT Single Mem 12.5 98.0 1.20
Duplicated Kernel and Mem 23.8 87.4 3.08
Beacon OverDT Duplicated Mem 4.7 98.8 1.08
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Performance Comparison
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Conclusions

= A new reliability analysis and mitigation approach for
GPGPU is presented

= Analysis is based on a fault injection solution targeting the
SASS instructions executed on real devices

— CUBINJ is able to target all threads, or some specific thread(s)

= The developed beacon thread mitigation solution shows an
improved resiliency of more than 37%

— Negligible performance degradation



Future works

= We are building SASS encoding maps to further exploit the
possibility for instrumentation to support the fault injection

environment

= Extend the fault injection analysis and mitigation on GPGPU
clusters for HPC
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Reliability analysis
= Radiation experiments have been performed using
accelerated beam

— Focus on various aspects of the analysis and mitigations of soft errors in
GPGPUs

= Radiation beam hits the device indistinctively
— Besides, internal device implementation is not available
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Reliability analysis — Architectural models

= Development of architectural models in order to perform a
more detailed analysis

— CUDA binary of streaming multiprocessor computation based on NVIDIA
G80 - FlexGrip
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Transparent Scalability

* The GPU runtime system can execute thread blocks in any
order relative to each other

= This flexibility enables to execute the same application code
on hardware with different numbers of SM
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Convolutional Neural Networks

Panda 79 %
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Clown 6 %
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NVBItFI
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