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Goals
§ A reliability analysis methodology for embedded General 

Purpose GPUs (GPGPUs) adopting emulation-based fault 
injection
– Injection of Single Event Upsets (SEUs)
– Instrumentation of the Streaming ASSembler (SASS)

§ A software mitigation method implementing dependable 
computing strategies for GPGPUs
– Redundancy with negligible computational time overhead
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Outline
§ Towards GPGPUs for embedded systems
§ Space and terrestrial radiation environment
§ Soft Errors effects and reliability analysis
§ Embedded GPUs computing scenario
§ Fault injection method and experimental results
§ Software mitigation and experimental results
§ Conclusions 
§ Future works
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Towards GPGPUs for embedded systems
§ GPGPU applications are nowadays expanding from the 

domain of High Performance Computing (HPC) 
§ Embedded GPUs are one of the main solutions for self-

driving cars and autonomous vehicles

[NVIDIA courtesy]
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Towards GPGPUs for embedded systems
§ Towards an Integrated GPU Accelerated SoC as a Flight 

Computer for Small Satellites (CubeSat) or more…

[Nanoracks courtesy] [NASA / ESA / CSA]
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Space Radiation Environment
§ Towards safety and mission-critical applications

SPACE Environment

Galactic Cosmic Ray
Protons

Heavy Ions

Solar wind and flares
Protons

Heavy Ions
Van Allen Belt

Protons
Electrons

Supernova explosions
Planets collisions

Star collisions
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Terrestrial Radiation Environment
§ Galactic Cosmic Ray interacts with 

atmosphere
§ Generation of a shower of energetic 

particles
– Especially Neutrons
– JEDEC JESD89A Standard reports up to 13 n/(cm2・

h) at sea level

§ Neutrons affect modern distributed 
computer systems and architectures
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Soft Error
§ A radiation particle can generate a Soft Error also known as 

Single Event Upset (SEU) if affecting a memory element: 
Data FF or RAM bit-flip

[Baumann 2005]
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Soft Error
§ A radiation particle can generate a Soft Error also known as 

Single Event Upset (SEU) if affecting a memory element: 
Data FF or RAM bit-flip

Single Event Upsets (SEUs) 

0 1 0 0
0 0 0 0
0 0 1 1

0 1 0 0
0 0 0 1
0 0 1 1
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Reliability analysis methodologies

Real Devices + Real Faults

Costly (time, money, skills)

Lack of Control

Emulate Specific Fault Model

Good Granularity

Slow

Usually, not involving whole hw-level
( à not comprehensive )

Radiation Testing Fault Simulation or Emulation
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Reliability analysis - Simulators
§ Several simulators have been developed for micro-

architectural level analysis
§ These tools mimic the parallelism implemented in GPGPUs

– Functional GPGPU simulator Barra
– Heterogenous CPU-GPU simulator gem5-gpu
– GPGPU-sim 

§ Useful for early stage reliability investigations
– Fault injection on data variables and streams

§ Inaccurate for SEU injection in architectural resources
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Reliability analysis – Micro Architectural Fault Injections
§ Development of approaches able to exploit the Streaming 

ASSembler (SASS) and to inject faults
§ SASSIFI was proposed to inject faults in different locations

– Register files
– Shared memories
– Instruction operands

§ NVBitFI was proposed to intercept dynamic kernels call and 
insert error without modifying the source code
– Without affecting instruction scheduling or register allocations of the 

target program
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§ GPGPU devices employ a Single Instruction Multiple Threads 
(SIMT) model 
– The same instructions are executed by many cores inside the device

§ Each core maintains its own execution flow as a thread
– Threads may diverge to perform different tasks
– Threads may converge via synchronization or barrier instructions 

Embedded GPUs computing scenario
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Embedded GPUs computing scenario

HOST RAM

EXECUTE
MULTIPLE
THREADS

. . .

GPU RAM

§ Data must be moved from 
HOST to DEVICE memory in 
order to be processed on the 
GPU

§ When data is processed, and 
no more needed on the GPU, 
it is transferred back to HOST
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Embedded GPUs computing scenario
Software Hardware

Thread
GPU
core

Thread Block 
Streaming

Multiprocessor

...
Grid GPU

§ Once the CUDA application is 
launched, users could organize 
threads in Blocks and Grids

§ Tasks are not always perfectly 
distributed in threads

§ The same fault in terms of 
corrupted bits and instructions in 
different threads could yield 
different results

§ The context management is 
performed by the GPU runtime 
system 
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§ NVIDIA CUDA runtime environment (runtime APIs) provides 
high-level features 
– Context management

§ Kernel invokes syntax extension and PTX for Just-In-Time 
(JIT) compilation

§ JIT compiler transforms PTX code to device specific SASS
§ We exploited NVIDIA Driver API (DAPI)

Compilation of source code

CUDA Source Code SASS Instructions Cubin File for 
Loading in GPU

Extracting SASS Instructions Inf. For Fault 
Injection Platform

DAPI
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§ The developed fault injection tool CUBINJ allows two kinds 
of bitflips affecting any type of instruction
– In all the threads
– Only in certain specific threads 

§ The fault injection tool consists on two flows
– Host Application 
– Fault Injection 

Embedded GPUs computing scenario
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Host Application Execution Flow
Start

Select CUDA 
device

Create CUDA 
Context

Enable Profiling 
(CUPTI)

Load Kernel 
from cubin file

Context clean 
up

Input 
Preparation

Launch Kernel

Retrieve 
Output

Memory 
Clean Up

CUPTI Event 
Handler

Kernel Elapsed 
Time

End Application Specific

Kernel Start/Stop trigger



19

Fault Injection Flow
Kernel.cu Kernel.cubin
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Back end on Fault Injection Execution

Host
App

Binary

Cubin
Binary

CUBINJ
Cubin File
Context

Kernel0
Cubin
Binary

Kernel1
Cubin
BinaryKerneli

Cubin
Binary

CUBINJ
Kernel j

Extraction and 
Location k

Kernelj

SASS instructionk

ef5c000000080405

SASS instruction
“@!P0IADD R5, R5, R6 ;”

Inject 55th bit

SASS injected instruction
“@!P0ALD.PHYS R5, a[R4], R0 ;”

efdc000000080405
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Error Classification
§ Silent Data Corruption (SDC)

– There is a mismatch(es) with the faulty-free run
§ Detected Unrecoverable Error (DUE)

– Kernel did not finish normally as DAPI function call returns an error 
– Host application is not able to copy the results from GPGPU device memory 

to host
§ Hang

– Execution plus the memory copy operations are not able to finish within a 
detection latency time

§ Masked
– Kernel finished normally and no error is observed in the output.
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Experimental Results

Benchmark Selected Thread SASS 
instructions [#]

Kernel time
[ns]

Faults
[#]

matSum All Threads 18 4,483 1,536
Thread 0 24 4,489 832

matMul
All Threads 234 2,361,958 19,908

Thread 0 456 2,529,229 14,144

histogram

All Threads 354 839,492 30,208

Thread 0 762 849,401 22,976

Thread 1 762 848,201 22,976
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Error Rate Distribution
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Silent Data Corruption

Benchmark
Selected 
Thread

One Error 
[%]

All Wrong
[%]

Average 
Errors

[#]

matSum
All Threads 0.00 61.76 126.53

Thread 0 96.90 0.00 1.03

matMul
All Threads 0.00 73.35 254,414.31

Thread 0 87.24 0.00 6.51

histogram

All Threads 0.53 53.33 181.99

Thread 0 74.02 0.89 39.70
Thread 1 72.77 0.89 39.50
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Performance Comparison
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Soft Error Mitigation
§ Tunable according to the computational characteristics of a 

typical application running on embedded GPGPUs
– Initialization
– synchronization with the 

external data sample
– data stream host to GPU 

memory
– running the kernel threads
– data stream from GPU to 

host memory

Init Host -> Device

Thread #1

Thread #2

Thread #3

Thread #i

Threads
Stream

Repeated Iteration

Application Event Timeline t

Async Device -> Host
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Soft Error Mitigation
§ Adapted asynchronous memory copy functions from device 

to host
§ Execution of error detection and comparison threads

– Simultaneous execution during data transfer
– Periodical activation (Beacon Threads)
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Experimental Results
§ We performed the test on the Jetson TX2 NVIDIA 

development board
§ We used a data package of around 12MB 
§ Injection of 120K single bit flip

Benchmark
SDC
[%]

Detected
SDC
[%]

Detection
Latency

[ms]

Original 96.7 - -
Kernel Dup Single Mem 68.2 84.7 2.14

Beacon OverDT Single Mem 12.5 98.0 1.20
Duplicated Kernel and Mem 23.8 87.4 3.08

Beacon OverDT Duplicated Mem 4.7 98.8 1.08
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Performance Comparison
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The developed beacon threads over data 
transfer have an advantage of 37% with 
respect with the CUDA kernel thread’s
duplication
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Conclusions
§ A new reliability analysis and mitigation approach for 

GPGPU is presented
§ Analysis is based on a fault injection solution targeting the 

SASS instructions executed on real devices
– CUBINJ is able to target all threads, or some specific thread(s)

§ The developed beacon thread mitigation solution shows an 
improved resiliency of more than 37% 
– Negligible performance degradation
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Future works
§ We are building SASS encoding maps to further exploit the 

possibility for instrumentation to support the fault injection 
environment 

§ Extend the fault injection analysis and mitigation on GPGPU 
clusters for HPC 



Thank you
luca.sterpone@polito.it
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Reliability analysis
§ Radiation experiments have been performed using 

accelerated beam
– Focus on various aspects of the analysis and mitigations of soft errors in 

GPGPUs
§ Radiation beam hits the device indistinctively 

– Besides, internal device implementation is not available 
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Reliability analysis – Architectural models
§ Development of architectural models in order to perform a 

more detailed analysis
– CUDA binary of streaming multiprocessor computation based on NVIDIA 

G80 - FlexGrip
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Transparent Scalability
§ The GPU runtime system can execute thread blocks in any 

order relative to each other
§ This flexibility enables to execute the same application code 

on hardware with different numbers of SM
Grid
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Convolutional Neural Networks
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Panda 79 %
Cat 11 %
Clown 6 %
Penguin 4 %
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NVBitFI
Benchmark SASS instructions

[#]
Kernel time

[ns]
matSum 18 56,801
matMul 234 1,671,000

histogram 354 1,425,500
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