Analysis and Mitigation of Soft-Errors on
High Performance Embedded GPUs

Luca Sterpone s %l %, Politecnico
Sarah Azimi ; y di Torino

. N T AT Y
Corrado De Sio N o

Filippo Parisi ! PUNICH | Torino

[
Goals

= A reliability analysis methodology for embedded General
Purpose GPUs (GPGPUs) adopting emulation-based fault
injection
— Injection of Single Event Upsets (SEUS)
— Instrumentation of the Streaming ASSembler (SASS)

= A software mitigation method implementing dependable
computing strategies for GPGPUs
— Redundancy with negligible computational time overhead

e
Outline

= Towards GPGPUs for embedded systems

= Space and terrestrial radiation environment

= Soft Errors effects and reliability analysis

= Embedded GPUs computing scenario

= Fault injection method and experimental results
= Software mitigation and experimental results

= Conclusions

= Future works

I
Towards GPGPUs for embedded systems

= GPGPU applications are nowadays expanding from the
domain of High Performance Computing (HPC)

= Embedded GPUs are one of the main solutions for self-
driving cars and autonomous vehicles

[NVIDIA courtesy]

I
Towards GPGPUs for embedded systems

= Towards an Integrated GPU Accelerated SoC as a Flight
Computer for Small Satellites (CubeSat) or more...

[Nanoracks courtesy] [NASA/ESA/ S] .

I
Space Radiation Environment

= Towards safety and mission-critical applications

SPACE Environment

ﬁ

ﬁ

Galactic Cosmic Ray Supernova explosions
Protons Planets collisions
Heavy lons Star collisions

Solar wind and flares

>

Protons
Heavy lons

Van Allen Belt
Protons
Electrons

e
Terrestrial Radiation Environment

= Galactic Cosmic Ray interacts with
atmosphere

= Generation of a shower of energetic

particles
— Especially Neutrons

— JEDEC JESDB89A Standard reports up to 13 n/(cm? -
h) at sea level

= Neutrons affect modern distributed
computer systems and architectures

Soft Error

= A radiation particle can generate a Soft Error also known as

Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip

n+ lon track [

e Gy (b) Prompt
= charge - —
S | collection . (c) Diffusion
i £ charge
) & collection
+ + * _+ = 21 -
2 £
< + ®
+ SN~
+ - + ¥
= 3 ® 1 { (a) Onset .
L + 5 of event '
- - kS O |
P— | J
0 LBLELARAL | T I1r1n%
(b) (c)

10 40 10" 101°© 10°®
Time (seconds)
[Baumann 2005]

Soft Error

= A radiation particle can generate a Soft Error also known as
Single Event Upset (SEU) if affecting a memory element:
Data FF or RAM bit-flip

Incoming Charged
Oxide Insulation Particle

1 0
0|0 1
1 1

e Depletion Region

Single Event Upsets (SEUs)

Reliability analysis methodologies

Radiation Testing Fault Simulation or Emulation

CHIP

2 %D— CIRCUIT
J
i— LOGIC GATE
=

s || s TRANSISTORS

CAUTION
Y LISRRADTON

OPTICAL INSTRUMFNT%

[A] Real Devices + Real Faults

[A] Emulate Specific Fault Model
Ml Costly (time, money, skills)

B Lack of Control [A] Good Granularity
ack of Contro

B Slow

B Usually, not involving whole hw-level
(= not comprehensive)

I
Reliability analysis - Simulators

= Several simulators have been developed for micro-
architectural level analysis

= These tools mimic the parallelism implemented in GPGPUs
— Functional GPGPU simulator Barra

— Heterogenous CPU-GPU simulator gemS-gpu
— GPGPU-sim

= Useful for early stage reliability investigations
— Fault injection on data variables and streams

= Inaccurate for SEU injection in architectural resources

I
Reliability analysis — Micro Architectural Fault Injections

= Development of approaches able to exploit the Streaming
ASSembler (SASS) and to inject faults

= SASSIFI was proposed to inject faults in different locations
— Register files
— Shared memories
— Instruction operands

= NVBItFl was proposed to intercept dynamic kernels call and
insert error without modifying the source code

— Without affecting instruction scheduling or register allocations of the
target program

I
Embedded GPUs computing scenario

= GPGPU devices employ a Single Instruction Multiple Threads
(SIMT) model

— The same instructions are executed by many cores inside the device
= Each core maintains its own execution flow as a thread

— Threads may diverge to perform different tasks
— Threads may converge via synchronization or barrier instructions

Embedded GPUs computing scenario

= Data must be moved from HOST RAM
HOST to DEVICE memory in ==- GPU RAM EXECUTE
order to be processed on the I ——— MULTIPLE
GPU | |M!7 —

= When data is processed, and | M-
no more needed on the GPU, .I
it is transferred back to HOST

Embedded GPUs computing scenario

Software Hardware = Once the CUDA application is

BEE BEEE v

Grid Tasks are not always perfectly

R

= The same fault in terms of
Thread Block

corrupted bits and instructions in
different threads could yield
different results

= The context management is
performed by the GPU runtime
GPU system

Thread core

Streaming
Multiprocess

I
Compilation of source code

= NVIDIA CUDA runtime environment (runtime APIs) provides
high-level features
— Context management

= Kernel invokes syntax extension and PTX for Just-In-Time
(JIT) compilation

= JIT compiler transforms PTX code to device specific SASS

= We exploited NVIDIA Driver API (DAPI)

o o o e e o e e o e

1
@Z I (.] N\
DAA | . R Cubin File for
CUDA Source Code : SASS Instructions > Loading in GPU

Lo |

Extracting SASS Instructions Inf. For Fault
Injection Platform

I
Embedded GPUs computing scenario

* The developed fault injection tool CUBINJ allows two kinds
of bitflips affecting any type of instruction

— In all the threads

— Only in certain specific threads

= The fault injection tool consists on two flows
— Host Application
— Fault Injection

Host Application Execution Flow

Start

Select CUDA

device

Create CUDA

Input
Preparation

Kernel Start/Stop trigger

CUPTI Event
Handler

Kernel Elapsed A
Time

Context !
¥ ; Launch Kernel
Enable Profiling :
(CUPTI) ! .
v : Retrieve
Load Kernel ! Output
from cubin file !
d ' Memory
Context clean I Clean Up
up !
End Application Specific

I
Fault Injection Flow

1. Golden Run execution

—
nvcc

. Fault List
Kernel.cu Kernel.cubin

—> Generation

Femmmm—mmmmmmm—
: :
1 ! index i

Kernel Execution

Q
§ Fault Injection
S
Y v
[e) N\
S .
) Faulty cubin file — Kernel Execution
Golden SASS a
map | §
3
3
S
B
SASS ccl)rrup‘tion < Faulty SASS map
identification

Fault Classification
Output . Hicat! Output

Golden Kernel } Faulty Kernel]

Fault Injection Flow
1. Golden Run execution

e 2. Cuda object dump for
[fault list generation

1 index
________________]

o
Kernel Execution
Fault Injection

2 v
N\
Faulty cubin file - Kernel Executm
Golden SASS
map |

—
S'_A‘SS c9rrupt|on «—{ Faulty SASS map
identification

Faulty Kernel

N
Golden Kernel Fault Classification
Output Output

cuobjdump

cuobjdump

Fault Injection Flow
] 1. Golden Run execution
Generation 2. -
1 Cuda _object durr_lp for
e fault list generation

3. Fault List Generation
1 S— : 1. Kernel identification

. ¢ .
Kernel Executﬁ Fault Injection | 2 SASS Index

2 v
N\
Faulty cubin file - Kernel Executm
Golden SASS
map |

—
SASS corruption ¥ Faulty SASS map]

—>

cuobjdump

cuobjdump

identification

|

N
Golden Kernel Fault Classification Faulty Kernel
Output Output

Fault Injection Flow
1. Golden Run execution

e 3 2. Cuda object dump for
[fault list generation

e 3. Fault List Generation

LI = 1. Kernel identification
e E*“”tm § ﬁ 2. SASS index

g2 I‘bﬂal‘ﬁ 4. Fault Injection execution

Sl 1. Cubin file context

% 2. Kernel extraction and location
S?dsfni?}?i‘a‘ﬁfiﬁ”%t Fulysass map 3. Injection within resource
i

Golden Kernel | | Faultclassication e |

Fault Injection Flow
] 1. Golden Run execution
2. Cuda object dump for
/Fajﬁm\ . .
e fault list generation

3. Fault List Generation

1) q'“ """""""" : 1. Kernel identification
emel Executm Fault Injection 2 SASS |ndeX

—>

£
g2 I‘bﬂal‘ﬁ 4. Fault Injection execution
Sl 1. Cubin file context
% 2. Kernel extraction and location
S?dsfni?}?i‘a‘ﬁfiﬁ"%t Fulysass map 3. Injection within resource
i

Soden Kerma o Fauty Kemel] 5. Fault Classification

Fault Classification B

Output 5

I
Back end on Fault Injection Execution

CUBINJ
Kernel j Kernel,
guLtj)Elll:\l"i Kernel, Extraction and .
Context Cu Location k
g Bir Kernel g
Cubin SASS instruction,
Binary
Inject 55t bit
ef5c000000080405 > efdc000000080405
SASS instruction SASS injected instruction
“@!POIADD R5, R5, R6 ;" “@IPOALD.PHYS R5, a[R4], RO ;"

e
Error Classification

= Silent Data Corruption (SDC)
— There is a mismatch(es) with the faulty-free run
= Detected Unrecoverable Error (DUE)

— Kernel did not finish normally as DAPI function call returns an error

— Host application is not able to copy the results from GPGPU device memory
to host

= Hang

— Execution plus the memory copy operations are not able to finish within a
detection latency time

= Masked

— Kernel finished normally and no error is observed in the output.

Experimental Results

Benchmark | Selected Thread SASS Kernel time
mstructlons [#] [ns]

All Threads 4,483 1,536
Thread O 24 4,489 832
All Threads 234 2,361,958 19,908
Thread 0 456 2,529,229 14,144
All Threads 354 839,492 30,208
Thread 0 762 849,401 22,976

Thread 1 762 848,201 22,976

Thread 1

.......................... o (g8
C B - ®
4 ©
1 1] (@)
= -
@) £ B
N = c
_ 3
=) wsL vl T S
o] £
T
N =
r (e]0] <<
wd = o
@© o
0 = o
. (]
N — B %ES'0¢€ = m
- >
o v 3
D w a
s E
O = 5
e %19/ <
Q 0 1 ==
® 2 %8C €T E
) <
oy =
o
r ©
o
O %0EtT £ 5
| - = S
- 2
................ n ©
E %Y1'8 i T &
%37 TT 1 m
%66 7T =
=

0.35
0.3
25
0.2
0.15

— LN
o Q
o o

[%] uonngly

(%)

I 91eYy JoJi]

Silent Data Corruption

oo | S N MR B

Benchmark Thread [%] [%] 4

m All Threads 0.00 61.76 126.53
Thread 0 96.90 0.00 1.03

m All Threads 0.00 73.35 254,414.31
Thread 0 87.24 0.00 6.51

All Threads 0.53 53.33 181.99

Thread 0 74.02 0.89 39.70
Thread 1 72.77 0.89 39.50

Performance Comparison

%00°0

= %€0°0 | =
5 4
5 g
o %680 @
& %SETT <
o+
B2
<
i
T %SL°0
v %68 0k =
= =
-
%780
o xwm.mé
©
(q0)
L
-
o %0y 5
xoo.S% %
s S
(%]
3 >
)
S ©
= %SS'T o £
— x&.:é 2
<
@
LN AN LN i LN o
N S — S S
o o o
[%]

pPeayJanQ awi] uollndax3 |auday suisne) syned

I
Soft Error Mitigation

= Tunable according to the computational characteristics of a

typical application running on embedded GPGPUs

Repeated Iteration |
Application Event Timeline

t

— Initialization <

— synchronization with the
external data sample l

— data stream host to GPU — . \
memory

— running the kernel threads

— data stream from GPU to __Threads
host memory

y

Async Device -> Host

N
7

Soft Error Mitigation

= Adapted asynchronous memory copy functions from device
to host

= Execution of error detection and comparison threads
— Simultaneous execution during data transfer
— Periodical activation (Beacon Threads)

~

Repeated Iteration |
Application Event Timeline t

>~

S(;ftware
Majority
Voter
I Init " Host -> Device | Async Device -> Host
Thread #1 T Beacon Th. 1
Thread #2 Beacon Th. 2 ¥ W

Thread #3 Beacon Th. 3

Threads Signature
-> Host

Stream

31

I
Experimental Results

= We performed the test on the Jetson TX2 NVIDIA
development board

= We used a data package of around 12MB
= Injection of 120K single bit flip

Detected Detection

Benchmark SDC Latency
[%] [ms]

96.7 - -

Kernel Dup Single Mem 68.2 84.7 2.14
Beacon OverDT Single Mem 12.5 98.0 1.20
Duplicated Kernel and Mem 23.8 87.4 3.08
Beacon OverDT Duplicated Mem 4.7 98.8 1.08

I
Performance Comparison

3,50
3,00
2,50
2,00
1,50
[ms]
1,00
0,50

0,00

Cycle Duration

= Original App

The developed beacon threads over data
transfer have an advantage of 37% with

respect with the CUDA kernel thread’s
duplication

1,65 1,66

1,03 - N

0,46 0,45 0,49 0,57 X o R
0,20 0,20 0,24 0,24 0,26 LA
Ay "l" BRERS H L M " o b el I

Kernel_Comp D2H DT H2D DT

Il Kernel Threads Dup (cuda)

z: Beacon OverDT 1 (single mem) af Threads Dup (cuda+mem)

. Beacon OverDT 1 (double mem)

Conclusions

= A new reliability analysis and mitigation approach for
GPGPU is presented

= Analysis is based on a fault injection solution targeting the
SASS instructions executed on real devices

— CUBINJ is able to target all threads, or some specific thread(s)

= The developed beacon thread mitigation solution shows an
improved resiliency of more than 37%

— Negligible performance degradation

Future works

= We are building SASS encoding maps to further exploit the
possibility for instrumentation to support the fault injection

environment

= Extend the fault injection analysis and mitigation on GPGPU
clusters for HPC

<

luca.sterpone@polito.it

I
Reliability analysis
= Radiation experiments have been performed using
accelerated beam

— Focus on various aspects of the analysis and mitigations of soft errors in
GPGPUs

= Radiation beam hits the device indistinctively
— Besides, internal device implementation is not available

I
Reliability analysis — Architectural models

= Development of architectural models in order to perform a
more detailed analysis

— CUDA binary of streaming multiprocessor computation based on NVIDIA
G80 - FlexGrip

I
Transparent Scalability

* The GPU runtime system can execute thread blocks in any
order relative to each other

= This flexibility enables to execute the same application code
on hardware with different numbers of SM

Grid
Block Block Block
©0) 10 20) SM1 SM2 | Block 0 || Block 1 |

SM1 SM2 SM3 SM4
/ \ | Block 2 || Block 3 |
Block~ 7 Block | M\ Block
1) 1) L en | Block 4 || Block 5 |
7
7 g 2 \
7 \ N

|Block0| |Block1|
‘Block 6 Block 7. Block0 Block1 Block2 Block3
timel

Block2 Block 3

| Block 4 | | Block 5 | | Block 6 | | Block 7 |

Thread | Thread | Thread | Thread | Thread
(0,0) (1,0 (2,0) (3,0) (4,0)

Thread | Thread | Thread | Thread | Thread
(0,1) (1,1 (2,1) (3,2) (4,1)

Thread | Thread | Thread | Thread | Thread

‘Block4 Block 5

| Block 6 | | Block 7 |

(0.2) (1,2) (2.2) (3.2) (4,2) v
Thread | Thread | Thread | Thread | Thread
(0,3) (1,3) (2,3) (3,3) (4,3)

Convolutional Neural Networks

Panda 79 %
Cat 11 %
Clown 6 %
Penguin 4%

.
NVBItFI

[#] [ns]

56,801

m 234 1,671,000
m 354 1,425,500

BSDC NDUE & Masked

69.22%

49.95%

(SaTums
27.04% 5 m)

matSum matMul histogram

Error Rate [%]

