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Process Algebra
CCS, CCP, and PEPA



Process Algebra
Process algebras (or process calculi) are mathematical constructs used 
to model systems of concurrent processes and can be utilized to obtain 
qualitative and quantitative information about the modeled systems.  
With a set of atomic actions specified in a process algebra, more 
complex actions can be constructed.  Process algebras can be viewed as 
"the study of concurrent processes, their equational theories, transition 
systems, and the equivalencies between the systems.“

Historical Process Algebras:
• Calculus of Communicating Systems (CCS)  (Milner 1980)
• Communicating Sequential Processes (CSP) (Hoare 1984)



Calculus of Communicating Systems (CCS)

CCS was developed by Robin Miller in 1980.

Process algebra operators for constructing agents:
• Action prefixing (·): a · P denotes process P can only become active after action a.
• Choice (+): P and Q are processes, so is P + Q.  An action from P will preempt an action from Q and 

vice versa.
• Parallel composition (|): Given P and Q, P |Q denotes a system in which P and Q may operate 

independently or communicate complimentarily.
• Restriction (\): Σ is a set of actions. P \ Σ denotes the set of actions P is restricted from performing.

• Relabeling: P and Q are similar, and can be mapped to each other with a transformation function.  
P can be relabeled as Q.

Quantitative processes can not be modeled with CCS.



Communicating Sequential Processes (CSP)

CSP evolved from CCS and was introduced by Anthony Hoare in 1984, and designed to simplify CCS.

Process algebra operators for constructing agents:
• Prefix (a à P): a is an event in the alphabet of process P, so a process performing a behaves as P.
• Choice

• Non-deterministic choice ( π ): The choice between P and Q is decided by the system itself, and the 
environment has no control over the choice.

• Deterministic choice (+): Similar to CCS, P + Q indicates the system can behave as either process P or process 
Q.

• Parallel Composition ( | ): P and Q can occur concurrently.
• Hiding (abstraction) ( \ ): A is the alphabet of events of P that are not visible outside of P, denoted 

as P \ A.

Quantitative processes can not be modeled with CSP.



Performance Evaluation Process Algebra 
(PEPA)
PEPA was developed by Jane Hillston in 1991.  Based on stochastic Markov 
processes, it addresses the lack of quantitation in CCS and CSP.

Process algebra operators for constructing agents:
• Prefix ( · ): Activity a, and activity rate r, (a,r) · P
• Choice (+): A choice between competing components
• Cooperation (⋈) P⋈ Q denotes concurrent activities of P and Q
• Hiding ( \ ): A set of components L that are unknown to process P, defined as P \ L

PEPA and various PEPA tools have been used for modeling a variety of concurrent 
systems



Continuous Time Markov Chains in PEPA

• Continuous time Markov chains (CTMC) were chosen as the underlying execution 
framework in PEPA because a continuous time (CT) representation more 
accurately addresses modeling parallel and distributed systems with events that 
are both countably finite and that occur at non-specific time intervals than does a 
discrete time (DT) representation.  
• Events in models utilizing a CTMC representation are evaluated as each event 

occurs, where DTMC-based models are evaluated at predefined or discrete time 
intervals.  
• DTMCs do not support modeling of systems with concurrent behavior, while 

CTMCs allow a more accurate time representation for concurrent systems.  
• Evaluating a Continuous Time model at the occurrence of each event, one can 

more accurately model systems with many parallel agents acting independently.



Why Process Algebras?

Alternative Methods:
• Stochastic Petri Nets (SPNs)
• Queuing Networks

Process algebras offer significant improvement over these methods 
because:
• Compositionality
• Quantitative Analysis
• Wide Acceptance



IPC
The Imperial PEPA Compiler



The Imperial PEPA Compiler (IPC)

• Developed in 2003, IPC is a PEPA model execution framework independent 
of the PEPA Eclipse Plug-In

J. T. Bradley, N. J. Dingle, S. T. Gilmore, and W. J. Knottenbelt. ``Derivation of passage-
time densities in pepa models using ipc: The imperial pepa compiler.`` 11th IEEE/ACM 
International Symposium on Modeling, Analysis and Simulation of Computer 
Telecommunications Systems, MASCOTS 2003. pp. 344 – 351

• Implemented in Haskell, and compiled before execution, unlike the PEPA 
Eclipse Plug-In
• IPC has not been as widely adopted as the PEPA Eclipse Plug-In, nor has it 

seen recent updates 



Prior Work & Motivations



Prior Work

• Previous work utilized the PEPA Eclipse Plug-In to model parallel and 
distributed systems consisting of applications subject to perturbations 
at runtime mapped onto machines with varying availability to 
determine the robustness of a given mapping of applications onto 
machines 
• A mapping is considered robust with respect to specific system 

performance features (i.e. Makespan) against perturbations if the 
degradation of these features is constrained when limited 
perturbations occur  



Prior Work (continued)

• Limited Number of Models
• Prior work was constrained by a limited number of published and available 

models that represent sets of applications subject to perturbations at runtime 
mapped onto machines
• The small number of available models limits the insights able to be drawn into 

defining more informed metrics for makespan-based robustness metrics

• Model Size Limitations
• For those models that are available, the PEPA Eclipse Plug-In is unable to 

execute models above a certain size, limiting our efforts to small systems that 
fail to capture the complexity of large parallel and distributed computing 
systems



Prior Work Validated IPC as a Replacement for PEPA Eclipse 
Plug-In

• IPC was able to replicate prior 
results obtained using the PEPA 
Eclipse Plug-In
• IPC was shown to be able to 

analyze larger models than 
previously possible with the 
PEPA Eclipse Plug-In 

As the number of machines increases, the overall makespan time decreases



Our Motivation for This Work

• Determine Upper Limits of Scalability
• IPC was shown to be able to simulate larger models than previously possible 

with the PEPA Eclipse Plug-In
• There has not been a systematic analysis of the size limits of models where 

systems of applications mapped onto machines where both the number of 
applications and the number of machines increase
• The small number of available models limits the insights able to be drawn into 

defining more informed metrics for makespan-based robustness metrics
• These small models have limited efforts to small systems that fail to capture 

the complexity of large parallel and distributed computing systems



Experimental Design

m a (m, a) a / m

1 2 (1, 2) 2

1 4 (1, 4) 4

1 8 (1, 8) 8

1 16 (1, 16) 16

1 32 (1, 32) 32

1 64 (1, 64) 64

2 4 (2, 4) 2

…

64 128 (64, 128) 2

…

64 4096 (64, 4096) 64

m = 2i | 0 ≤ i ≤ 6
a = 2(i + j)  | 1 ≤ j ≤ 6

This generates 42 (m, a) pairs, ranging from (1, 2) to (64, 
4,096).

For each pair, we generate 1,000 PEPA models (N = 1,000) 
with the application rates and perturbed rates derived from 
the uniform distribution and a random mapping of 
applications to machines.

We evaluate each model using the IPC with the following 
parameters:

timeStep = 5
stopTime = 7,500

42,000 PEPA Models



Simulation Results



m = 16

• Each red point
represents the 
makespan time for 
a single PEPA model

• Each box plot is 
comprised of 1,000 
points for its 
number of 
applications 
mapped to 
machines



Simulation Results

log2-log2 Transformation



Upper Whisker

Upper Quartile

Median

Lower Quartile

Lower Whisker

log2 Transformed m = 16

• log2-log2 transformed 
results are very linear

• Large number of data 
points allows for 
consistent determination 
of statistical features

• 2D data analysis 
prohibitive of full 
utilization of 
experimental design

y x



3D Surface Fit

m n b

upper_whisker (≤ 95%) -0.128 0.540 8.621

upper_quartile (≤ 75%) -0.112 0.669 6.983

Median (≤ 50%) -0.134 0.813 5.238

lower_quartile (≤ 25%) -0.144 0.887 3.989

lower_whisker (≤ 5%) -0.007 0.890 1.404

z = mx +ny + b

x = log2 (machines)
y = log2 (applications)
z = log2 (makespan)



Makespan Estimation Heuristic

['lower_whisker', 'lower_quartile', 'median', 'upper_quartile', 'upper_whisker’]
[150.351, 592.505, 1032.806, 1918.436, 3150.47]

Given a number of machines (m) and a number of applications 
(a), we can generate an estimate of the expected distribution 
of makespan times when the application rates (r) and 
perturbed rates (p) follow the uniform distribution.



Estimator Validation: f(m,a)
f(m,a) ≤ 5% Q1 Median Q3 ≤ 95%

Makespan
Prediction

Result Makespan
Prediction

Result Makespan
Prediction

Result Makespan
Prediction

Result Makespan
Prediction

Result

(3,10) 20.368 1.371% 104.604 36.814% 211.787 60.970% 522.200 81.329% 1185.106 91.983%

(10,200) 290.199 0.356% 1255.183 22.328% 2058.418 42.399% 3386.676 63.539% 5118.572 85.867%

(15,450) 595.351 0.000% 2431.475 21.439% 3769.197 47.430% 5568.070 69.016% 7528.528 100.000%

(24,800) 990.051 0.000% 3786.572 26.172% 5649.781 53.711% 7763.766 100.000% 9670.083 100.000%

(28,1200) 1418.534 0.000% 5307.097 32.642% 7695.17 100.000% 10009.050 100.000% 11801.028 100.000%

Five (m,a) pairs were generated and evaluated using the newly constructed heuristic.  Cells in orange 
represent scenarios where the projected makespan time is grater than the duration of the simulation 

period.

The Q1, Median, and Q3 values are on average 6.21%±3.79% from their expected values.  There is greater 
variation in the whiskers, and at the higher end, this is reflective of the simulation duration for the analysis.



Conclusions

• As both the number of applications and number of machines increase, the model 
makespan time also increases in a linear relationship when the the number of machines, 
the number of applications, and the model makespan time are log2 transformed

• A significant amount of variance in the model makespan time is dependent on both the 
number of applications and number of machines in the model being evalauated

• Constructed a heuristic that can be utilized for a given number of applications and 
machines to help inform makespan values to potentially help define a robustness target

• Evaluating populations of applications where the rates and perturbed rates follow a 
known statistical distribution, it is possible to derive makespan targets based on the 
statistical features of those populations
• Automatic determination of initial makespan targets for robustness

• As the size and complexity of the parallel and distributed systems being modeled 
increases, there is a corresponding need to increase the makespan target used to derive 
a robustness metric for the system, as the overall makespan time for the systems 
increases with the complexity and size of the system



Future Work

• Examination of alternative statistical models for application rates and 
perturbed rates beyond the uniform distribution
• Develop new datasets of application rates based on real production 

HPC data transformed and modeled into this framework to provide an 
even better insight into the development of mapping strategies
• Examination to determine if the additional variation present in the 

linear model is caused by machine overload, where due to load 
imbalance a small number of machines are executing the majority of 
applications
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