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schedule could
be: static,
dynamic,
guided,
or auto



DOALL loops
● taskloop

#pragma omp parallel
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● taskloop

#pragma omp parallel
#pramga omp [single|master]
#pragma omp taskloop [grainsize(...)|num_tasks(...)]
for( i = 0 ; i < N; i += 1){

A[i]=b*i;
}

Scheduling at
runtime.



Agenda
● Background

– DOALL loops
– DOACROSS loops
– May DOACROSS loops

● Performance Comparison
● Experimental Evaluation
● Conclusions



DOACROSS loops
● Example

for( i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;

   ...
}



DOACROSS loops
● Example

for( i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;
...

}



DOACROSS loops
● How can we parallelize this loop?

for( i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;
...

}

Using DOACROSS
techniques: 

HELIX, DSWP, 
the ordered
construct in 
OpenMP, etc.



DOACROSS loops
● parallel-for and ordered

#pragma omp parallel for ordered(1)
for( i = 0 ; i < N; i += 1){
   #pragma omp ordered depend(sink:i-1)

A[i]=A[i-1]*i;
   #pragma omp ordered depend(source)
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It serializes the 
region between
sink and source
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for(i=5 ; i < y_size-5; i++){
… 

   x=r[i][j];
   if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
… 

}
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● Using parallel-for and ordered

#pragma omp parallel for ordered(2)
for(i=5 ; i < y_size-5; i++){

…
   x=r[i][j];

#pragma omp ordered depend(sink:i-1) 
   if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
#pragma omp ordered depend(source) 

}

Poor performance!
Slowdowns!
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● Can we improve this?

for(i=5 ; i < y_size-5; i++){
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   x=r[i][j];
   if (x>0 && /*compare x*/){

corner_list[n].info=0;
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May DOACROSS loops
● Can we improve this?

for(i=5 ; i < y_size-5; i++){
… 

   x=r[i][j];
   if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
… 

}

Yes, using Thread-
Level Speculation

(TLS)



May DOACROSS loops
● Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b) 

Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

#pragma omp [parallel for | taskloop] tls(S_SIZE) spec_private(n)
for(i=5 ; i < y_size-5; i++){
   x=r[i][j];
   if (x>0 && /*compare x*/){

#pragma tls if_read(n)
corner_list[n].info=0;
corner_list[n].x=j;
…
n++;
#pragma tls if_write(n)

}
}



May DOACROSS loops
● Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b) 

Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

#pragma omp [parallel for | taskloop] tls(S_SIZE) spec_private(n)
for(i=5 ; i < y_size-5; i++){
   x=r[i][j];
   if (x>0 && /*compare x*/){

#pragma tls if_read(n)
corner_list[n].info=0;
corner_list[n].x=j;
…
n++;
#pragma tls if_write(n)

}
}

Speed-ups of 1.2x
with FOR-TLS and 
of 1.33x with STL

using 4 cores



Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions



Performance 
Comparison



Performance Comparison
● Without Speculation?



Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:



Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:
● Static (in parallel-for) which favors balanced loops 

(regular loops, with static dependencies, uniform data 
distribution, etc.) 



Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:
● Static (in parallel-for) which favors balanced loops 

(regular loops, with static dependencies, uniform data 
distribution, etc.) 

● Dynamic (in parallel-for and taskloop) which favors 
loops that have load imbalance (irregular, with dynamic 
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Performance Comparison
● With Speculation?

– Scheduling of may DOACROSS loop parallelization can be:
● Static (in FOR-TLS) which would favor balanced loops
● Dynamic (in  STL) which would favor loops that have load 

imbalance.
– We study loop features to find out why a loop is better using 

FOR-TLS or STL.
– The loop features are: Tloop, the regularity of the loop, the 

function calls that exist inside if statements, the transaction 
duration, the binomial transaction duration and loop 
regularity, %lc, the average iteration size, and S_SIZE.
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for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}
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total = 0;
...
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Irregular!



Performance Comparison
● Example (susan_smoothing’s loop)

for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}

So, will it have better 
performance with STL?
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Experimental Evaluation
● The performance assessment in this work reports 

speed-ups and abort/commit ratios (transaction 
outcome) for the STL, FOR-TLS and ordered 
parallelizations of may DOACROSS loops.

● We used the LLVM libomp12 OpenMP Runtime.

● We performed the experimental evaluation on the 
OpenMP Runtime Library using the modified 
version to allow monotonic scheduling.
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and 429.mcf (single-depot vehicle scheduling )
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● Quadcore Intel Skylake (TSX-NI)
● 9 loops from cBench and 1 loop from SPEC
● 5 benchmarks: susan_corners, susan_edges, 
susan_smoothing, bitcount, and 429.mcf

● Baseline: serial execution of the same benchmark 
program compiled at the same optimization level

● Default input for each benchmark and reference 
input for mcf
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It is necessary to study some characteristics:

● Tloop, because if it is very short, the overhead of using transactions, 
code transformations, and the runtime scheduler (only for STL) will 
exceed the parallelization gain.

● The regularity of the loop in terms of the number of if statements 
inside the loop body, if a loop is irregular (more if statements) it will 
have more aborts due to order inversion.

● The different function calls that exist inside the if statements in the 
loop body that make the execution time of each iteration significantly 
variable (irregular).
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Results
● The duration of the transaction, since a very short transaction will produce a 

large number of aborts due to order inversion while a very long transaction will 
produce aborts due to the OS quantum reached. Apart from this, a very short 
duration will imply that the loop becomes practically regular.

● The binomial transaction duration and loop regularity, since in the case of loop 
irregularity, STL, through load balancing, will always contribute to reducing 
aborts due to order inversion, but in the event that the loop is regular, the 
effectiveness of STL will depend on the duration of the transaction. 

● If it has a very short duration and is regular, STL will only cause an overhead 
since the iterations are already balanced and the runtime scheduler of tasks 
can delay the completion of the transactions and generate more aborts due to 
order inversion than not using tasks. While if the duration is not short and the 
loop is regular, the described overhead can be neglected and STL has no 
harmful or beneficial effect on aborts due to order inversion.
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Results
● The %lc of each loop for a given input can alter the regularity of the 

loop tremendously if tied to if conditions.

● The iteration size of the loop and the S_SIZE used in the 
parallelization to extend the transaction duration (short duration 
causes aborts due to order inversion) because if the capacity of the 
loop is exhaustive, the S_SIZE used to decrease aborts due to order 
inversion can generate aborts due to capacity overflow.



Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions



Conclusions



Conclusions
● This paper compares two speculative loop parallelization 

techniques and shows that it is necessary to study some 
characteristics of loops to be parallelized.



Conclusions
● This paper compares two speculative loop parallelization 

techniques and shows that it is necessary to study some 
characteristics of loops to be parallelized.

● Generally, FOR-TLS performs much better on regular loops and 
STL on irregular loops; however, some cases, such as the 
problem with spec_private of arrays using tasks in loops from the 
susan_e benchmark, can alter the expected STL performance.



Conclusions
● This paper compares two speculative loop parallelization 

techniques and shows that it is necessary to study some 
characteristics of loops to be parallelized.

● Generally, FOR-TLS performs much better on regular loops and 
STL on irregular loops; however, some cases, such as the 
problem with spec_private of arrays using tasks in loops from the 
susan_e benchmark, can alter the expected STL performance.

● Moreover, the whole-program performance of each benchmark 
when using FOR-TLS deteriorates too much with respect to the 
performance of the loop, which does not happen in STL since it 
uses an efficient way of creating the team of threads.



Conclusions
● Finally, OpenMP ordered is not a technique that is well suited 

for loops that are may DOACROSS, as it serializes the iterations 
and has a synchronization overhead not counterbalanced by 
parallel segments, which are difficult to recognize and 
demarcate.



Thanks!
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