
Performance Comparison of
Speculative Taskloop and OpenMP-
for-Loop Thread-Level Speculation
on Hardware Transactional Memory

Juan Salamanca
São Paulo State University (Unesp),Brazil
ISPDC 2022

Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions

Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions

Background

Agenda
● Background

– DOALL loops
– DOACROSS loops
– May DOACROSS loops

● Performance Comparison
● Experimental Evaluation
● Conclusions

DOALL loops
● Example

for(i = 0 ; i < N; i += 1){
A[i]=b*i;

}

DOALL loops
● How can we parallelize this loop?

for(i = 0 ; i < N; i += 1){
A[i]=b*i;

}

DOALL loops
● How can we parallelize this loop?

for(i = 0 ; i < N; i += 1){
A[i]=b*i;

}

Using DOALL
techniques:

parallel-for
and taskloop

in OpenMP

DOALL loops
● parallel-for

#pragma omp parallel for schedule(...)
for(i = 0 ; i < N; i += 1){

A[i]=b*i;
}

DOALL loops
● parallel-for

#pragma omp parallel for schedule(...)
for(i = 0 ; i < N; i += 1){

A[i]=b*i;
}

schedule could
be: static,
dynamic,
guided,
or auto

DOALL loops
● taskloop

#pragma omp parallel
#pramga omp [single|master]
#pragma omp taskloop [grainsize(...)|num_tasks(...)]
for(i = 0 ; i < N; i += 1){

A[i]=b*i;
}

DOALL loops
● taskloop

#pragma omp parallel
#pramga omp [single|master]
#pragma omp taskloop [grainsize(...)|num_tasks(...)]
for(i = 0 ; i < N; i += 1){

A[i]=b*i;
}

Scheduling at
runtime.

Agenda
● Background

– DOALL loops
– DOACROSS loops
– May DOACROSS loops

● Performance Comparison
● Experimental Evaluation
● Conclusions

DOACROSS loops
● Example

for(i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;

 ...
}

DOACROSS loops
● Example

for(i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;
...

}

DOACROSS loops
● How can we parallelize this loop?

for(i = 0 ; i < N; i += 1){
A[i]=A[i-1]*i;
...

}

Using DOACROSS
techniques:

HELIX, DSWP,
the ordered
construct in
OpenMP, etc.

DOACROSS loops
● parallel-for and ordered

#pragma omp parallel for ordered(1)
for(i = 0 ; i < N; i += 1){
 #pragma omp ordered depend(sink:i-1)

A[i]=A[i-1]*i;
 #pragma omp ordered depend(source)

...
}

DOACROSS loops
● parallel-for and ordered

#pragma omp parallel for ordered(1)
for(i = 0 ; i < N; i += 1){
 #pragma omp ordered depend(sink:i-1)

A[i]=A[i-1]*i;
 #pragma omp ordered depend(source)

...
}

It serializes the
region between
sink and source

Agenda
● Background

– DOALL loops
– DOACROSS loops
– May DOACROSS loops

● Performance Comparison
● Experimental Evaluation
● Conclusions

May DOACROSS loops
● Example (susan_corners’s loop)

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

May DOACROSS loops
● How can we parallelize this loop?

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

May DOACROSS loops
● How can we parallelize this loop?

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

If this condition
is false for all

iterations, the
loop is DOALL

at runtime.

May DOACROSS loops
● How can we parallelize this loop?

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

Compilers are
conservative,

they consider it
as DOACROSS.

May DOACROSS loops
● Using parallel-for and ordered

#pragma omp parallel for ordered(2)
for(i=5 ; i < y_size-5; i++){

…
 x=r[i][j];

#pragma omp ordered depend(sink:i-1)
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
#pragma omp ordered depend(source)

}

Compilers are
conservative,

they consider it
as DOACROSS.

May DOACROSS loops
● Using parallel-for and ordered

#pragma omp parallel for ordered(2)
for(i=5 ; i < y_size-5; i++){

…
 x=r[i][j];

#pragma omp ordered depend(sink:i-1)
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
#pragma omp ordered depend(source)

}

Poor performance!
Slowdowns!

May DOACROSS loops
● Can we improve this?

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

May DOACROSS loops
● Can we improve this?

for(i=5 ; i < y_size-5; i++){
…

 x=r[i][j];
 if (x>0 && /*compare x*/){

corner_list[n].info=0;
corner_list[n].x=j;
…
n++;

}
…

}

Yes, using Thread-
Level Speculation

(TLS)

May DOACROSS loops
● Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b)

Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

#pragma omp [parallel for | taskloop] tls(S_SIZE) spec_private(n)
for(i=5 ; i < y_size-5; i++){
 x=r[i][j];
 if (x>0 && /*compare x*/){

#pragma tls if_read(n)
corner_list[n].info=0;
corner_list[n].x=j;
…
n++;
#pragma tls if_write(n)

}
}

May DOACROSS loops
● Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b)

Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

#pragma omp [parallel for | taskloop] tls(S_SIZE) spec_private(n)
for(i=5 ; i < y_size-5; i++){
 x=r[i][j];
 if (x>0 && /*compare x*/){

#pragma tls if_read(n)
corner_list[n].info=0;
corner_list[n].x=j;
…
n++;
#pragma tls if_write(n)

}
}

Speed-ups of 1.2x
with FOR-TLS and
of 1.33x with STL

using 4 cores

Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions

Performance
Comparison

Performance Comparison
● Without Speculation?

Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:

Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:
● Static (in parallel-for) which favors balanced loops

(regular loops, with static dependencies, uniform data
distribution, etc.)

Performance Comparison
● Without Speculation?

– Scheduling of DOALL loop parallelization can be:
● Static (in parallel-for) which favors balanced loops

(regular loops, with static dependencies, uniform data
distribution, etc.)

● Dynamic (in parallel-for and taskloop) which favors
loops that have load imbalance (irregular, with dynamic
dependencies, non-uniform distribution, with many
conditionals, etc.)

Performance Comparison
● With Speculation?

Performance Comparison
● With Speculation?

– Scheduling of may DOACROSS loop parallelization can be:
● Static (in FOR-TLS) which would favor balanced loops
● Dynamic (in STL) which would favor loops that have load

imbalance.

Performance Comparison
● With Speculation?

– Scheduling of may DOACROSS loop parallelization can be:
● Static (in FOR-TLS) which would favor balanced loops
● Dynamic (in STL) which would favor loops that have load

imbalance.
– We study loop features to find out why a loop is better using

FOR-TLS or STL.

Performance Comparison
● With Speculation?

– Scheduling of may DOACROSS loop parallelization can be:
● Static (in FOR-TLS) which would favor balanced loops
● Dynamic (in STL) which would favor loops that have load

imbalance.
– We study loop features to find out why a loop is better using

FOR-TLS or STL.
– The loop features are: Tloop, the regularity of the loop, the

function calls that exist inside if statements, the transaction
duration, the binomial transaction duration and loop
regularity, %lc, the average iteration size, and S_SIZE.

Performance Comparison
● Example (susan_smoothing’s loop)

for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}

Performance Comparison
● Example (susan_smoothing’s loop)

for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}

Performance Comparison
● Example (susan_smoothing’s loop)

for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}

Irregular!

Performance Comparison
● Example (susan_smoothing’s loop)

for(j=mask_size;j<x_size-mask_size;j++){ //loopE
area = 0;
total = 0;
...
centre = in[i*x_size+j];
...// calulating area and total
tmp = area-10000;
if (tmp==0) *out++=median(in,i,j,x_size);
else *out++=((total-(centre*10000))/tmp);

}

So, will it have better
performance with STL?

Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions

Experimental Evaluation

Experimental Evaluation
● The performance assessment in this work reports

speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered
parallelizations of may DOACROSS loops.

Experimental Evaluation
● The performance assessment in this work reports

speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered
parallelizations of may DOACROSS loops.

● We used the LLVM libomp12 OpenMP Runtime.

Experimental Evaluation
● The performance assessment in this work reports

speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered
parallelizations of may DOACROSS loops.

● We used the LLVM libomp12 OpenMP Runtime.

● We performed the experimental evaluation on the
OpenMP Runtime Library using the modified
version to allow monotonic scheduling.

Setup and Environment
● Quadcore Intel Skylake (TSX-NI)

Setup and Environment
● Quadcore Intel Skylake (TSX-NI)
● 9 loops from cBench and 1 loop from SPEC

Setup and Environment
● Quadcore Intel Skylake (TSX-NI)
● 9 loops from cBench and 1 loop from SPEC
● 5 benchmarks: susan_corners (image recognition

package, recognizes corners of MRI of the brain),
susan_edges (recognizes edges of MRI),
susan_smoothing (smooths an image), bitcount
(tests the bit manipulation abilities of a processor),
and 429.mcf (single-depot vehicle scheduling)

Setup and Environment
● Quadcore Intel Skylake (TSX-NI)
● 9 loops from cBench and 1 loop from SPEC
● 5 benchmarks: susan_corners, susan_edges,
susan_smoothing, bitcount, and 429.mcf

● Baseline: serial execution of the same benchmark
program compiled at the same optimization level

Setup and Environment
● Quadcore Intel Skylake (TSX-NI)
● 9 loops from cBench and 1 loop from SPEC
● 5 benchmarks: susan_corners, susan_edges,
susan_smoothing, bitcount, and 429.mcf

● Baseline: serial execution of the same benchmark
program compiled at the same optimization level

● Default input for each benchmark and reference
input for mcf

Setup and Environment

Results
It is necessary to study some characteristics:

● Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will
exceed the parallelization gain.

Results
It is necessary to study some characteristics:

● Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will
exceed the parallelization gain.

● The regularity of the loop in terms of the number of if statements
inside the loop body, if a loop is irregular (more if statements) it will
have more aborts due to order inversion.

Results
It is necessary to study some characteristics:

● Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will
exceed the parallelization gain.

● The regularity of the loop in terms of the number of if statements
inside the loop body, if a loop is irregular (more if statements) it will
have more aborts due to order inversion.

● The different function calls that exist inside the if statements in the
loop body that make the execution time of each iteration significantly
variable (irregular).

Results
● The duration of the transaction, since a very short transaction will produce a

large number of aborts due to order inversion while a very long transaction will
produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

Results
● The duration of the transaction, since a very short transaction will produce a

large number of aborts due to order inversion while a very long transaction will
produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

● The binomial transaction duration and loop regularity, since in the case of loop
irregularity, STL, through load balancing, will always contribute to reducing
aborts due to order inversion, but in the event that the loop is regular, the
effectiveness of STL will depend on the duration of the transaction.

Results
● The duration of the transaction, since a very short transaction will produce a

large number of aborts due to order inversion while a very long transaction will
produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

● The binomial transaction duration and loop regularity, since in the case of loop
irregularity, STL, through load balancing, will always contribute to reducing
aborts due to order inversion, but in the event that the loop is regular, the
effectiveness of STL will depend on the duration of the transaction.

● If it has a very short duration and is regular, STL will only cause an overhead
since the iterations are already balanced and the runtime scheduler of tasks
can delay the completion of the transactions and generate more aborts due to
order inversion than not using tasks. While if the duration is not short and the
loop is regular, the described overhead can be neglected and STL has no
harmful or beneficial effect on aborts due to order inversion.

Results
● The %lc of each loop for a given input can alter the regularity of the

loop tremendously if tied to if conditions.

Results
● The %lc of each loop for a given input can alter the regularity of the

loop tremendously if tied to if conditions.

● The iteration size of the loop and the S_SIZE used in the
parallelization to extend the transaction duration (short duration
causes aborts due to order inversion) because if the capacity of the
loop is exhaustive, the S_SIZE used to decrease aborts due to order
inversion can generate aborts due to capacity overflow.

Agenda
● Background
● Performance Comparison
● Experimental Evaluation
● Conclusions

Conclusions

Conclusions
● This paper compares two speculative loop parallelization

techniques and shows that it is necessary to study some
characteristics of loops to be parallelized.

Conclusions
● This paper compares two speculative loop parallelization

techniques and shows that it is necessary to study some
characteristics of loops to be parallelized.

● Generally, FOR-TLS performs much better on regular loops and
STL on irregular loops; however, some cases, such as the
problem with spec_private of arrays using tasks in loops from the
susan_e benchmark, can alter the expected STL performance.

Conclusions
● This paper compares two speculative loop parallelization

techniques and shows that it is necessary to study some
characteristics of loops to be parallelized.

● Generally, FOR-TLS performs much better on regular loops and
STL on irregular loops; however, some cases, such as the
problem with spec_private of arrays using tasks in loops from the
susan_e benchmark, can alter the expected STL performance.

● Moreover, the whole-program performance of each benchmark
when using FOR-TLS deteriorates too much with respect to the
performance of the loop, which does not happen in STL since it
uses an efficient way of creating the team of threads.

Conclusions
● Finally, OpenMP ordered is not a technique that is well suited

for loops that are may DOACROSS, as it serializes the iterations
and has a synchronization overhead not counterbalanced by
parallel segments, which are difficult to recognize and
demarcate.

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

