Performance Comparison of
Speculative Taskloop and OpenMP-
for-Loop Thread-Level Speculation

on Hardware Transactional Memory

AVA
AVAVAY
VAY

unesp

Juan Salamanca
Sao0 Paulo State University (Unesp),Brazil

rda BEEE G0

» Background

* Performance Comparison
* Experimental Evaluation
» Conclusions

- Background

* Performance Comparison
* Experimental Evaluation
» Conclusions

Background

- Background

- DOALL loops
- DOACROSS loops
- May DOACROSS loops

* Performance Comparison

* Experimental Evaluation
* Conclusions

DOALL loops

 Example

/
for(1 =0 ; 1 < N; i1 4= 1){
=b*1i;
}
o

DOALL loops

 How can we parallelize this loop?

DOALL loops

 How can we parallelize this loop?

. Using DOALL
/ techniques:
parallel—-for

and taskloop

B[k ==y - in OpenMP
) J

for(1 =0 ; 1 < N; i1 4= 1){

DOALL loops

e parallel—-for

-

}

.

Al1]l=b*1;

~

#pragma omp parallel for schedule(...)
for(i =0 ; 1 < N; 1 += 1){

/

DOALL loops

e parallel—-for

4 N

#pragma omp parallel for schedule(...)
for(i =0 ; 1 < N; 1 += 1){

A[i]=b*i; schedule could
J be: static,
\\\ dynamic,
guided,

\\\ or auto ,//

DOALL

e taskloop

l00PS

-

#pragma omp parallel

#pramga omp [single|master]

~

#pragma omp taskloop [grainsize(...) |num_tasks(...)]

for(1 = 0

}

o

; 1 < Nj
Ali]=b*1i;

= 1) {

,/

DOALL loops

e taskloop

4 N

#pragma omp parallel
#pramga omp [single|master]

#pragma omp taskloop [grainsize(...) |num_tasks(...)]
for(i =0 ; i < N; 1 += 1){
Ali]l=b*1i;

} . .

\ Scheduling at
k runtime.

- Background
- BOALHeeps
- DOACROSS loops
- May DOACROSS loops

* Performance Comparison

* Experimental Evaluation
* Conclusions

DOUALROSS 1QEDS

 Example

DOUALROSS 1QEDS

 Example

DOUALROSS 1QEDS

 How can we parallelize this loop?

}

o

for(1

Ali]

"~ Using DOACROSS

; 1 < N; 1 += 1) {

0
Ali-1

1*1;

techniques:
HELIX, DSWP,

the ordered

construct in
\\OpenMP, etc.//

/

DOUALROSS 1QEDS

e parallel-for and ordered

/;;ragma omp parallel for ordered (1) \\\
for(1 =0 ; 1 < N; 1 += 1){
#pragma omp ordered depend(sink:i-1)
Ali]=A[i-11%*1i;
#pragma omp ordered depend (source)

L -

DOUALROSS 1QEDS

e parallel-for and ordered

/;;ragma omp parallel for ordered (1) \\\
for(1 =0 ; 1 < N; 1 += 1){
#pragma omp ordered depend(sink:i-1)
Ali]=A[i-11%*1i;
#pragma omp ordered depend (source)

\i\ \\\\\\\// N

It serializes the
region between

sink and source
N e

- DOACROSSHeops
U\JPJ

- May DOACROSS loops
* Performance Comparison

* Experimental Evaluation
* Conclusions

May DOACROSS [00pS

« Example (susan_corners’s loop)

//g;;(i=5 ; 1 < y_size-5; 1++){ \\\\\

x=r[i][J];

if (x>0 && /*compare x*/){
corner_list[n].info=0;
corner_list[n].x=73;

n++;

B g

May DOACROSS [00pS

 How can we parallelize this loop?

//g;;(i=5 ; 1 < y_size-5; 1++){ \\\\\

x=r[1][J];
if (x>0 && /*compare x*/) {
corner_list[n].info=0;

corner_list[n] .x=7];

n++;

}

B 5

May DOACROSS [00pS

 How can we parallelize this loop?

@(i=5 ; 1 < y_size-5; 1++){ \

x=r[1][3]];

if (x>0 && /*compare x*/){ ' |fthis condition
corner_list[n].info=0; is false for all
corner_list[n] .x=73; \ iterations, the
loop is DOALL
n++; at runtime.
} S 4

B g

May DOACROSS [00pS

 How can we parallelize this loop?

//g;;(i=5 ; 1 < y_size-5; 1++){ \\\\\

x=r[1][§]; | |
7 N

if (x>0 && /*compare x*/){ |

corner_list[n].info=0; Compilers are

T

- conservative,
they consider it
R as DOACROSS.

} S /

corner_list[n] .x=7];

May DOACROSS [00pS

» Using parallel-for and ordered

//;;;agma omp parallel for ordered(2) \\\\\

for(i=5 ; i < y_size-5; i++){

x=r[i][3];
#pragma omp ordered depend(sink:i-1) /// \\

if (x>0 && /*compare x*/) { — Compilers are
corner_list[n].info=0; | conservative,

they consider it

as DOACROSS.

| n ++; \\ /

\\i\\#pragma omp ordered depend(sourcei////

corner_1list[n] .x=7;

May DOACROSS [00pS

» Using parallel-for and ordered

//;;;agma omp parallel for ordered(2) \\\\\

for(i=5 ; i < y_size-5; i++){

x=r[i]1[3];
#pragma omp ordered depend(sink:i-1)

if (x>0 && /*compare x*/) { v BN
corner_list [n].info=0; ~ Poor performance!
corner_list[n] .x=7J; W Slowdowns!
N g
n++;

}

\\i\\#pragma omp ordered depend(sourcei////

May DOACROSS [00pS

this?

 Can we improve

//g;;(i=5 ; 1 < y_size-5; 1++){ \\\\\

B

x=r[i][J];

if (x>0 && /*compare x*/){
corner_list[n].info=0;
corner_list[n].x=73;

n++;

}

/

May DOACROSS [00pS

 Can we improve

this?

@(i=5 ; 1 < y_size-5; 1++){ \

B

x=r[1][J];
if (x>0 && /*compare x*/) {
corner_list[n].info=0;

. . 3 .
corner_list[n] X=J5 Yes, using Thread-

:

n++;

}

:

vel Speculation
(TLS)

o

May DOACROSS [00pS

» Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b)
Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

//;;;agma omp [parallel for | taskloop] tls(S_SIZE) spec_private(;:\\\

for(i=5 ; 1 < y_size-5; 1i++) {
x=r[1][]J];
if (x>0 && /*compare x*/) {
#pragma tls if read(n)
corner_list[n].info=0;

corner_list[n] .x=73;

n++,;

#pragma tls if write(n)

. /

May DOACROSS [00pS

» Using TLS in two flavors: (a)FOR-TLS[TPDS18]; (b)
Speculative Taskloop(STL)[IWOMP19&21,HPCS20].

//;;;agma omp [parallel for | taskloop] tls(S_SIZE) spec_private(;:\\\

for(i=5 ; 1 < y_size-5; i++){
x=r[i][J];
if (x>0 && /*compare x*/) {

#pragma tls if read(n) //// §peed-u pPS of 1. 2x\
corner_list[n].info=0; -~ with FOR-TLS and
corner_list[n].x=7; of 1.33x with STL

- using 4 cores

n++,;

#pragma tls if write(n)

. /

- Baekground
* Performance Comparison
* Experimental Evaluation

 Conclusions

Performance
Comparison

Performance Comparison

» Without Speculation?

Performance Comparison

» Without Speculation?
- Scheduling of DOALL loop parallelization can be:

Performance Comparison

» Without Speculation?

- Scheduling of DOALL loop parallelization can be:

- Static (in parallel-for) which favors balanced loops

(reqular loops, with static dependencies, uniform data
distribution, etc.)

Performance Comparison

» Without Speculation?

- Scheduling of DOALL loop parallelization can be:

- Static (in parallel-for) which favors balanced loops

(reqular loops, with static dependencies, uniform data
distribution, etc.)

« Dynamic (in parallel-for and taskloop) which favors
loops that have load imbalance (irregular, with dynamic
dependencies, non-uniform distribution, with many
conditionals, etc.)

Performance Comparison

« With Speculation?

Performance Comparison

« With Speculation?

- Scheduling of may DOACROSS loop parallelization can be:

« Static (in FOR-TLS) which would favor balanced loops

 Dynamic (in STL) which would favor loops that have load
imbalance.

Performance Comparison

« With Speculation?

- Scheduling of may DOACROSS loop parallelization can be:

« Static (in FOR-TLS) which would favor balanced loops

 Dynamic (in STL) which would favor loops that have load
imbalance.

- We study loop features to find out why a loop Is better using
FOR-TLS or STL.

Performance Comparison

* With Speculation?

- Scheduling of may DOACROSS loop parallelization can be:

« Static (in FOR-TLS) which would favor balanced loops

 Dynamic (in STL) which would favor loops that have load
imbalance.

- We study loop features to find out why a loop is better using
FOR-TLS or STL.

- The loop features are: Tloop, the reqularity of the loop, the
function calls that exist inside if statements, the transaction

duration, the binomial transaction duration and loop
reqularity, %lc, the average iteration size, and S_SIZE.

Performance Comparison

« Example (susan_smoothing’s loop)

//;;;(j=mask_size;j<x_size—mask_size;j++){ //lo;;;\\

area = 0;
total = 0;
centre = 1n[i*x_sizet]];

...// calulating area and total

tmp = area-10000;

1if (tmp==0) *out++=median(in, i, j,X_size);
else *out++=((total-(centre*10000))/tmp);

o /

Performance Comparison

« Example (susan_smoothing’s loop)

//;;;(jmask_size;j<x_size—mask_size;j++){ //lo;;;\\

area = 0;
total = 0;
centre = 1in[i*x_sizet]];

...// calulating area and total

tmp = area-10000;

if (tmp==0) *out++=median(in,i, j,x_size);
else *out++=((total-(centre*10000)) /tmp);

. /

Performance Comparison

« Example (susan_smoothing’s loop)

//;;;(jmask size; J<x_slze-mask_size; J++) { //lo;;;\\

area = 0;

total = 0;

centre = 1In[i*x_sizet]];

...// calulating area and total Vs

tmp = area-10000; g

if (tmp==0) *out++=median(in,i,j,x_sizek} Irregular
else *out++=((total-(centre*10000))/tmp,

Performance Comparison

« Example (susan_smoothing’s loop)

//;;;(j=mask_size;j<x_size—mask_size;j++){ //1o00pE
area = 0

’
total = 0; -

centre = 1n[i*x_sizet]];
...// calulating area and total

—

tmp = area-10000; o
1if (tmp==0) *out++=median(in, i, j,X_size);
else *out++=((total-(centre*10000))/tmp);

o /

So, will it have better
performance with STL?

- Experimental Evaluation
* Conclusions

Experimental Evaluation

ExXperimental Evaluation

* The performance assessment in this work reports
speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered

parallelizations of may DOACROSS loops.

ExXperimental Evaluation

* The performance assessment in this work reports
speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered

parallelizations of may DOACROSS loops.
« We used the LLVM 1ibompl12 OpenMP Runtime.

ExXperimental Evaluation

* The performance assessment in this work reports
speed-ups and abort/commit ratios (transaction
outcome) for the STL, FOR-TLS and ordered

parallelizations of may DOACROSS loops.
« We used the LLVM 1ibompl12 OpenMP Runtime.

* We performed the experimental evaluation on the
OpenMP Runtime Library using the modified
version to allow monotonic scheduling.

Setup and Environment

* Quadcore Intel Skylake (TSX-NI)

Setup and Environment

* Quadcore Intel Skylake (TSX-NI)
* 9 loops from cBench and 1 loop from SPEC

Setup and Environment

* Quadcore Intel Skylake (TSX-NI)
* 9 loops from cBench and 1 loop from SPEC

5 benchmarks: susan_corners (image recognition

package, recognizes corners of MRI of the brain),
susan_edges (recognizes edges of MRI),

susan_smoothing (smooths an image), bitcount

(tests the bit manipulation abilities of a processor),
and 429.mcf (single-depot vehicle scheduling)

Setup and Environment

* Quadcore Intel Skylake (TSX-NI)
* 9 loops from cBench and 1 loop from SPEC

« 5 benchmarks: susan_corners, susan_edges,
susan_smoothing, bitcount, and 429.mcf

* Baseline: serial execution of the same benchmark
program compiled at the same optimization level

Setup and Environment

* Quadcore Intel Skylake (TSX-NI)
* 9 loops from cBench and 1 loop from SPEC

« 5 benchmarks: susan_corners, susan_edges,
susan_smoothing, bitcount, and 429.mcf

* Baseline: serial execution of the same benchmark
program compiled at the same optimization level

* Default input for each benchmark and reference
input for mcf

Setup and Environment

Loop ID

Benchmark

Location

Invocations

<—=—=Imon=pr

=
{2
H

automotive bitcount

automotive_susan_c
automotive_ susan_e
automotive_ susan_e
automotive_susan_s
automotive_ susan_e
automotive_ susan_e
automotive_susan_s
automotive_ susan_c
429 .mcf

bitcnts.c,65
susan.c,l458
susan.c,l118
susan.c,l057
susan.c,725
susan.c,l117
susan.c,1056
susan.c,/23
susan.c,l614
pbeampp . c,165

560
344080
165308
166056
22050
374
374
49
782
21854886

Results

It iIs necessary to study some characteristics:

 Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will

exceed the parallelization gain.

Results

It iIs necessary to study some characteristics:

 Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will
exceed the parallelization gain.

« The reqularity of the loop in terms of the number of if statements
inside the loop body, if a loop is irregular (more if statements) it will
have more aborts due to order inversion.

Results

It iIs necessary to study some characteristics:

 Tloop, because if it is very short, the overhead of using transactions,
code transformations, and the runtime scheduler (only for STL) will
exceed the parallelization gain.

« The reqularity of the loop in terms of the number of if statements
inside the loop body, if a loop is irregular (more if statements) it will
have more aborts due to order inversion.

« The different function calls that exist inside the if statements in the

loop body that make the execution time of each iteration significantly
variable (irregular).

Results

 The duration of the transaction, since a very short transaction will produce a
large number of aborts due to order inversion while a very long transaction will

produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

Results

 The duration of the transaction, since a very short transaction will produce a
large number of aborts due to order inversion while a very long transaction will
produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

 The binomial transaction duration and loop regularity, since in the case of loop
irregularity, STL, through load balancing, will always contribute to reducing
aborts due to order inversion, but in the event that the loop is regular, the
effectiveness of STL will depend on the duration of the transaction.

Results

 The duration of the transaction, since a very short transaction will produce a
large number of aborts due to order inversion while a very long transaction will
produce aborts due to the OS quantum reached. Apart from this, a very short
duration will imply that the loop becomes practically regular.

 The binomial transaction duration and loop regularity, since in the case of loop
irregularity, STL, through load balancing, will always contribute to reducing
aborts due to order inversion, but in the event that the loop is regular, the
effectiveness of STL will depend on the duration of the transaction.

* If it has a very short duration and is regular, STL will only cause an overhead
since the iterations are already balanced and the runtime scheduler of tasks
can delay the completion of the transactions and generate more aborts due to
order inversion than not using tasks. While if the duration is not short and the
loop is regular, the described overhead can be neglected and STL has no
harmful or beneficial effect on aborts due to order inversion.

Results

« The %lc of each loop for a given input can alter the regularity of the
loop tremendously if tied to if conditions.

Results

« The %lc of each loop for a given input can alter the regularity of the
loop tremendously if tied to if conditions.

« The iteration size of the loop and the s_sizZzE used in the

parallelization to extend the transaction duration (short duration
causes aborts due to order inversion) because if the capacity of the
loop is exhaustive, the s_sIzE used to decrease aborts due to order

inversion can generate aborts due to capacity overflow.

- Background
» PerformaneceComparison
. E . | Evaluat

e Conclusions

Conclusions

Ceege Nesp=

 This paper compares two speculative loop parallelization
technigues and shows that it is necessary to study some
characteristics of loops to be parallelized.

Ceege Nesp=

 This paper compares two speculative loop parallelization
technigues and shows that it is necessary to study some
characteristics of loops to be parallelized.

* Generally, FOR-TLS performs much better on reqgular loops and
STL on irregular loops; however, some cases, such as the
problem with spec_private of arrays using tasks in loops from the
susan_e benchmark, can alter the expected STL performance.

Ceege Nesp=

 This paper compares two speculative loop parallelization
techniqgues and shows that it is necessary to study some
characteristics of loops to be parallelized.

* Generally, FOR-TLS performs much better on regular loops and
STL on irreqular loops; however, some cases, such as the
problem with spec_private of arrays using tasks in loops from the
susan_e benchmark, can alter the expected STL performance.

 Moreover, the whole-program performance of each benchmark
when using FOR-TLS deteriorates too much with respect to the
performance of the loop, which does not happen in STL since it
uses an efficient way of creating the team of threads.

Ceege Nesp=

« Finally, OpenMP ordered iIs not a technique that is well suited

for loops that are may DOACROSS, as it serializes the iterations
and has a synchronization overhead not counterbalanced by
parallel segments, which are difficult to recognize and
demarcate.

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

